Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

SPIRAL:
Al for High Performance Code

Franz Franchetti

Department of Electrical and Computer Engineering

Carnegie Mellon University
www.ece.cmu.edu/~franzf

Joint work with the SPIRAL team at CMU, UIUC, Drexel, SpiralGen, Inc.,
and collaborators at LBL, ORNL, and LANL

This work was supported by DARPA, DOE, ONR, NSF, Intel, Mercury, SRC, and Nvidia

http://www.ece.cmu.edu/~franzf

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Algorithms and Mathematics: 2,500+ Years

o | my
EERTSOT SR

—

1
i
1R
wlal |

W
134
) P

 AEESE>Pm|
3 SERESERN DREa

) N HR

Fast Fourier Transform

265 An Algorithm for the Machine Calculation of
mplex Fourier Series

By Jumes W. Cooley and John W. Tukey

NACHLASS

THEORIA INTERPOLATIONIS

O.J\-‘JMI‘L[L)MJ’ S v. pe: METHODO NOVA TRACTATA.
! tod‘dh‘d&bww\y 7 or
K -t uwluwla;»
g hirsdr Ateds 2 -
X’uftfﬂ\w-vr’/" e e e)

& udrw«wawﬂ)"~
o 3lyse

‘M;{‘Lu"ml"m ot

FFT in Matrix Form
Van Loan, 1992

ita ut surma quaesita, quam per §* denotabimus fiat = a4 60" Hd-f-ete.:

Fast Fourier Transform

C.F. Gauss, 1805 Cooley&Tukey, 1965

Carnegie Mellon

Y ERERRE

Moore’s Law in Practice

1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 10°, giga (G) = 10°, tera (T) = 10?2, peta (P) = 10?5, exa (E) = 10?8

In 2025...

Cell phone Laptop Workstation Al Server

#1 supercomputer
15 Gflop/s 120 Gflop/s 32 Tflop/s (2xcpu)

3.2 Pflop/s (72xcpu) 2.7 Eflop/s

...would have been the #1 supercomputer back in...

Cray Y-MP C90 CM-5/1024 Earth Simulator Tianhe-1A

16 Gflop/s 131 Gflop/s 41 Tflop/s 4.7 Pflop/s
1991 1993 2002 2010

Carnegie Mellon

But: Language Adoption is Slow

Programming languages
= 1953: Fortran

= 1973: C

= 1985: C++

= 1997: OpenMP

= 2007: CUDA

= 2009: OpenCL

Performance libraries
= 1979: BLAS

= 1992: LAPACK

= 1994: MPI

= 1995: ScaLAPACK

= 1995: PETSc

= 1997: FFTW

Productivity/scripting languages
= 1987: Perl

= 1989: Python

= 1993: Ruby

= 1995: Java

= 2000: CH#

Big Data and ML Frameworks
= 2004: MapReduce

2005: Hadoop

2009: Spark

2015: TensorFlow

2016: PyTorch

Symbolic and Numerical PSEs
= 1958: LISP

= 1972: Prolog

= 1984: Matlab

= 1982: Maple

= 1988: Mathematica

= 1990: Haskell

= 1993: R

Numerical Mathematics libraries
= 1970: IMSL

= 1971: NAG

= 2001: GNU Scientific Library

= 2003: Intel Math Kernel Library

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Explosive Growth of Source Code

Windows 10, 2015
60M LOC

Progra anag
File Options Window Help

3 B &

File Manager| Eumu\FaneI Print Manager EIlpBuuk Eummand WlndowsNT
|||||

50k LOC

< &
PIF Editor Mai Schedule+ Windows NT \l Fiead M
i 8088 ASM
Books Online

Bd Bl Bl [

Accessories Administrative Games Startup
ols

Carnegie Mellon

O R

Al For Performance Engineering

‘ TensorFIOW Applied : Oplim!zalio'n
Functional Analysis u‘ ngineering Pavel rnfeld
e Introduction to
Tensor Analysis
¢ and the Calculus
&, Java of Moving
= Surfaces
OpenMP -
. LINEAR GBRARPH
@, python ALGEBRA THEORY

Caffe
«* boost 0penACC

cccccccccccc

D ¢ D Discrete =
i@hadmmp - Mathematlcs

L7
a Sporéz

OpenCL —

Combinatorial
Optimization

How to maintain correctness? Raising abstraction is key

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj286nK0LHXAhVm7oMKHaphCP8QjRwIBw&url=https://fossbytes.com/10-reasons-learn-java-programming-language/&psig=AOvVaw1cQZY-gY6ndCG_8XHN5SV0&ust=1510321607858256
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiknauF0bHXAhWo6YMKHR3ADO0QjRwIBw&url=https://gist.github.com/arundasan91/b432cb011d1c45b65222d0fac5f9232c&psig=AOvVaw09drhY_ABrPk_s6Q_M5GKn&ust=1510321727365527
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiAtsOP0bHXAhVn8IMKHb1QAIkQjRwIBw&url=http://logonoid.com/hadoop-logo/&psig=AOvVaw22i6mkYgLSu4wmRfMy9Mid&ust=1510321756057554
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjStvWX0bHXAhXK8YMKHUGoDkQQjRwIBw&url=https://spark.apache.org/&psig=AOvVaw0qNwmWHEYaqwbxpNco_ObT&ust=1510321773637952
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiqwbrf0bHXAhUh74MKHYNfBUwQjRwIBw&url=https://www.grid.wayne.edu/resources/applications.html&psig=AOvVaw0gJVnsJYYazpaIgkDuo9eU&ust=1510321923634276
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwjuiOfs0bHXAhUjyoMKHR2NCxEQjRwIBw&url=https://www.anandtech.com/show/6886/intel-updates-opencl-driver-and-tools-for-ivy-bridge-and-haswell&psig=AOvVaw1GPi74RgWYgCcMTyfmbKcF&ust=1510321951672541
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwj6v8-C0rHXAhUE5YMKHV9ZCEkQjRwIBw&url=https://en.wikipedia.org/wiki/File:Nvidia_CUDA_Logo.jpg&psig=AOvVaw02xaTsKlXhs8ZhiYS3i56M&ust=1510321997410984
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiCwe6R0rHXAhVJ74MKHT7PCwkQjRwIBw&url=https://nvidia.qwiklab.com/focuses/preview/3066?locale%3Den&psig=AOvVaw3FpGc6c4oQC0IeDQTcOZ3j&ust=1510322029384196
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwiCwe6R0rHXAhVJ74MKHT7PCwkQjRwIBw&url=http://www.ciaranmccann.me/c-openmp-concurrent-simulation/&psig=AOvVaw3FpGc6c4oQC0IeDQTcOZ3j&ust=1510322029384196
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjS1-en1LHXAhXqx4MKHckIBvkQjRwIBw&url=https://www.booktopia.com.au/applied-functional-analysis-j-tinsley-oden/prod9781498761147.html&psig=AOvVaw1dWn88SfVBW39tHn_ocR3g&ust=1510322588501025
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi1oc7O1bHXAhWk4IMKHZp8BnoQjRwIBw&url=https://www.amazon.com/Graph-Theory-Dover-Books-Mathematics/dp/0486498069&psig=AOvVaw1XxiQq8GpjvXiJPj9hhM9p&ust=1510322952061904
https://books.google.com/books?id=Uiy-CAAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjgudmQ1rHXAhWJ54MKHexSCsUQjRwIBw&url=http://www.ems-ph.org/doi/10.4171/111&psig=AOvVaw2A8ZxSKKzbv2BWpQknH6PI&ust=1510323087512521
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi-1YG51rHXAhWq54MKHftOC8MQjRwIBw&url=http://www.or.uni-bonn.de/~vygen/co.html&psig=AOvVaw0BcRj13adlkVsvuE3_JIp7&ust=1510323176572957

Carnegie Mellon

Q) EREREERRG
Example: Hockney Convolution for PDEs

Numerical algorithm view Whiteboard view

Partial differential equation (PDE) Solution characterization

130
A(®) =p 3:R SR ;
5 0 1 p:RP=R
PR’ =R (@) = = o =) asllEl w00 m wf | ¥ 6
5 4| Z| |1
D = supp(p) C R* 3 «
_ di 130
Poisson’s equation. A is the Laplace operator Q - D P 33 Gy = 1 L k£ N 65
. An[lk — Nil||2 ‘
Approach: Green’s function Convolution via FFT f ’
in frequency domain Y

. Ndit = (G *)& o
£)=fDG(;c—mp(y)dy—(G @), GE) = 4r[[Z]] »)

Solution: ¢(.) = convolution of RHS p(.) with Green’s function G(.). Efficient through FFTs (frequency domain)
9%

96

Method of Local Corrections (MLC) B(3) = (G x 2)(@)
T) = (G *p)(F

- 1
G = Ar||k — N2

User program view Backend program view

if k # Nu Green’s function kernel in frequency domain

#include "fftx3.hpp”] hockney_130_33 _96.c - Notepad - o X
File Edit Format View Help
e 22370 = DA3[(b416 + 2)]; ~
int main(int argec, char* argv[]) a2371 = DA3[(b416 + 3)];
T113[(b415 + 26)]1 = ((a2368+t2146) - (a2369%t2147));
‘ T113[(b415 + 27)] = ((a2369%t2146) + (a2368+r2147));
. TL13[(b415 + 104)] = ((a2370*£2148) - (a2371%2149));
tracing=true; TI13[(b415 + 105)] = ((a2371%£2148) + (a2370%£2149));
t2150 = (81076 - s1080);
int nx, ny, nz; £2151 = (s1077 + s1081) ;
R) 2152 = (1076 + 51080 ;
box t<3> domain(point t<3>({{1,1,1}}), point t<3>({{nx,ny,nz}})); 2153 = (31077 - 31081) ;

a2372 = pA3[(b416 + 4)];
a2373 = pA3[(bd16 + 5)];
a2374 = DA3[(b416 + 6)];

array t<3,std::complex<double>> inputs (domain) ; 22375 = D43[(b416 + T)]:

N P . T113[(b415 + 52)]1 = ((a2372+%t2150) - (a2373+t2151)):
array t<3,std::complex<double>> outputs(domain) ; T113[(b415 + 53)] = ((a2373+£2150) + (a2372+£2151)) ;
std: :array<array t<3,std::complex<double>>,2> intermediates {domain}; TIiaLiLALe + 19 = (lapareeioieg) + (ezaraessreayy

}

}

for(int i6B = D; 168 <= 64; 1684+) |
double 51094, 31055, 31096, s1097;

MDDFT (domain.extents (), 1

RCDiag (domain.e
IMDDFT (domain outputs, intermediates([1])

}
"clas w piler"

intermediates[0], inputs);
, intermediates([l], intermedfates[0]) ; T

RN 51094 = T113[a2406];
E oW 81095 = T113[(aZ406 + 1)];
al R 2 81096 = T113[(a2406 + 130)];
b 3 21097 = T113[(42406 + 131))
\ 22407 - ((260+118) + 22406) :
sy

T112[a2407] = (31094 + 51096) ;
T112[(a2407 + 1)] = (81095 + 81087);

T112[(22407 + 130)] = (s1094 - s1096);
T112[(22407 + 131)] = (s1095 - =1097) ;

}

}

for(int 117 = 0; i17 <= 129; 117++) |{
static double T179(260];

Carnegie Mellon

L BNENEERNE

SPIRAL: Al for High Performance Code

Traditionally SPIRAL Approach

aded e e e SPIRAL
())

High performance library A&yl 1]l High performance library
optimized for given platform CGRZALULN optimized for given platform

Carnegie Mellon

) ERGIEERRG
SPIRAL’s History: The Long Arc of Math in CS

Proceedings IEEE

Dm PA d 9' 4 DARPA/Defense Sciences Office
T v(“'x Applied & Computational Mathematics Program
N i i Origins
~

PROGRAM c[NERAYION, OPTIMIZATION,
AND PLATFORM ADAPTATION

Prepared for DARPA/DSO by Anna Tsao*

Years of Innovation

1980-2020

Encyclopedia of
yciog

Parallel Computing

Project ongoing since 1998, core idea dates back to 1968

Carnegie Mellon

O R

Outline

" Introduction

= Specifying computation

= Achieving Performance Portability

= SPIRAL and Generative and Agentic Al

= Other Current Work

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Puschel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

Carnegie Mellon

A ENGINEERRE
SPIRAL: Al for Performance Engineering

Given:
= Mathematical problem specification
core mathematics does not change

= Target computer platform
varies greatly, new platforms introduced often

Wanted:
= Very good implementation of specification on platform

= Proof of correctness

void ££t64 (double *Y, double *X) {
20 1

-*'n y = FFT(x) s5674 mm256_permute2£128 pd(s5672, s5673, (0) | ((2) << 4));, /
5 4;,.' i mm256_permute2£128_ pd(s5672, s5673, (1) | ((3) << 4)) . -

s5675 = _
”’m s5676 = _mm256_unpacklo_pd(s5674, s5675);
s5677 = mm256 unpackhi pd(s5674, s5675) ;
"WM TR IY s5678 = *((a3738 + 16))_P performance
MW‘{*W’fﬁ“}ﬂ".v»"#‘fhﬂﬂr]«'ﬁ* $5679 = *((a3738 + 17)) I
! s5680 = mm256_permute2f128 pd(s5678, s5679, (0) | ((2) << 4));
- S s5681 = _mm256_permute2£128 pd(s5678, s5679, (1) | ((3) << 4));
s5682 = mm256_unpacklo_pd(s5680, s5681);
s5683 = mm256_unpackhi_pd(s5680, s5681);
On t5735 = _mm256_add pd(s5676, s5682);
_ t5736 = _mm256_add pd(s5677, s5683); QED-
= — t5737 = _mm256_add pd(s5670, t5735);
t5738 = _mm256_add_pd(s5671, t5736);
inte|> t5739 = _mm256_sub_pd(s5670, mm256 mul_pd(_mm_vbroadcast_sd(&(C22)), t5735));
‘ t5740 = _mm256_sub_pd(s5671, mm256 _mul_pd(_mm_vbroadcast_ sd(&(C22)), t5736));
t5741 = mm256_mul_pd(_mm_vbroadcast sd(&(C23)) _mm256_sub_pd(s5677, s5683));
4th Gen t5742 = mm256_mul_pd(_mm_vbroadcast sd(&(C23)), mm256_sub_pd(s$676, s5682)) ;

Intel* Core™ i7

i

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=vAsx1pRWshmqkM&tbnid=OGZEFdq-QNznEM:&ved=0CAUQjRw&url=http://nanobitwallpaper.com/intel-haswell-i7/&ei=a_iiU5idNsKMqAaGuYGgDQ&bvm=bv.69411363,d.cWc&psig=AFQjCNH6vnDdvGOCz5Y4P6I3GkzOQ06S5w&ust=1403275695913880

Carnegie Mellon

Electrical & Computer

) ERGNEERRE

OL Operators

Definition
= Operator: Multiple vectors — Multiple vectors

= Stateless
= Higher-dimensional data is linearized
= Operators are potentially nonlinear

CNO % .. x C%—-1 — CNo w ... x CNe-1

M :
(X07X17 s 7Xk—1) — M(X07X17 s 7Xk—1)
Example: Scalar product ,
<.,.>p R"xR" - R
X — . H -
(@)i=0,...n- 1> W)i=0,..n-1) i;g TiY; < .. > » 1

Carnegie Mellon

Electrical & Computer

. O ENGNERRRNE

Breaking Down Operators into Expressions

m Application specific: Safety Distance as Rewrite Rule
SafeDiStV,A,b,a('a)) — (P[ZB, (a07 at, GQ)]() < dgo(a))(7))
With ao=2, a1=Y+e($+1), ao=(3+1)(42+=v)

Problem specification: hand-developed or automatically produced

m One-time effort: mathematical library

dn) = . n o(— EeRE] i
oo(ﬂ) H Hoo ()n Lis;ill\igébra

(0)n — Pointwise, ., (4 p)saob: ¢ €1+, = A V... }

|-/[6c — Reduction,, «, vy smax(|al,b])

< .,. >n— Reduction,, «,), q+p © POINtWiISE, .\, (4 5)sab

P[I’, (aOa cery an)] —< (GJO’ v)an)) s o(xi)n

(z*)n — Induction,, (,) sab.1

Library of well-known identities expressed in OL

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Loop and Code Level Rule System

Mathematical Loop Abstraction

m Selection and embedding operator: gather and scatter

COMORR:-UES &
(zi)i=0,.. n—1 > T

er(): R 5 "

(z) —~(0,...,0,2.,0,...,0)
ith
= Iterative operations: loop
n—1
:@—=Rm"=(D—=R)
i=0

Aj (@ Ag(x) U U Ap_1(x))

with L€ {Z. v, A, IT, min, max,...}

m Atomic operators: nonlinear scalar functions
Atomics : R! — R!
(@) = (f(x))

Abstract Code

Code objects et (

= Values and types
S8 =
s6

= Arithmetic operations s

var("s

= var(
q4 = var('g

" Logic operations

(e5) ()
N
aO\

0

i3 := var("i3", TInt), i5 := var("i5", TInt),

w2 := var("w2", TBool), wl := var("wl", T Real(64)),

T Real{64)), s7 := var("s7", T Real(64)),
T Real({64)}, s5 :=
T_Real(64)), sl := var("sl", T_Real(64)),
Real(64)), g3 := var(" q3 T _Real (64)),

("s5", T Real(64)),

D := var("D", TPtr(T_Real(64)).aligned([16, 01)),

X := var("X", TPtr(T_Real(64)).aligned([16, 0])),

= Constants, arrays and scalar variables

func(TInt, "dwmonitor",

(% 0]

decl([g3, g4, s1, s4, s5, s6, s7, s8, wi, w2],

= Assignments and control flow chain(

assign(s5, V(0.0)),
assign(s8, nth(x, V(0)}),

Properties: at the same time
= Program = (abstract syntax) tree

chain(

assign(s7, V(1.0)),
loop(i5, [0..2],

assign(sd, mul(s7, nth(D, i5))),
assign(s5, add(s5, sd4)),

assign(s7, mul(s7, s8))

= Represents program in restricted C)0

= OL operator over real numbers and

machine numbers (floating-point) chazn

= Pure functionalinterpretation

= Representslambda expression)
Y.

assign(q3,
assign(qd,
assign(wl,
assign(s6,
assign(sl,

assign(sl, V(0.0)),
loop(i3, [0..1],

nth(X, add(i3, v(1)))),
nth(X, add(V(3), 13))),
sub(q3, q4)),

cond (geq(wl, V(0)), w1, neg(wl))),

cond (geq(s1, s6), s1, s6))

assign (w2, geq(sl, s5)),

creturn(w2)

Translation and Optimization

= Translating Basic OL into 2-OL map loop

n—1

Pointwise, ;, — 5 (e}'o Atomicy o (e!) ") :: ::
1=0

— —

n-1 - Q)

) ny T -

Reduction,, (4 4y sa+b — ;} &) -

—_— -

0

= Optimizing Basic OL/Z-OL

Pointwise,, 5. o Pointwisey g, — Pointwise;, f.o,. map; map, fused map
—_— — — —_— —
Pointwise,, r. oel — ef! o Pointwisel_fJ —_— > = — —
— — — —- —
—_— — - - —_— -
—_ - — _ —
—_— - - —_ -
a() Q) (fea)()

Rule Based Compiler

Compilation rules: recursive descent
Code (y = (Ao B)(z)) — {decl(t), Code (t = B(x)),Code (y = A(t))}
n—1
Code (() z)| — {y :=0,for(i = 0.n — 1) Code (y-|- = Ar(iﬂ))} £0)

Code (y = (e (I))
Code (y =e} (;c)) — {y =0,y[] := 1‘[01}
)

= y[0] := f(=[i])

— y[0] := x[q]

Code (y = Atomic(z)
<chain (
assign (¥, V(0.0),
loop({il, [0..5],
assign(nth(y, il),
finth(X, i1)))

Cleanup rules: term rewriting

— chain([a, b]))

chain(a, chain(b))
decl (D, decl(E, c¢)) — decl([D, E], c)
loop(i, decl(D, c¢)) — decl(D, loop(i, c))
chain(a, decl(D, b)) - decl(D, chain([a, b]))

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Putting it Together: One Big Rule System

Mathematical specification

OL SpeCification SafeDiStV,A-b,E('! "y) - (P[:C, ((10, ai, (1‘,2)]() < dgo(s))(' D))

with ao=%, ar=F+e($+1), az=($+1) (42 +=v)
Expansion + backtracking l
OL (dataflow)
expression
Recursive descent l

2-OL (loop) expression

Confluent term rewriting l
Optimized Z-OL
expression
Recursive descent l

Final code

Abstract code int dwmonitor(flecat *X, double *D) {
__ ml128d ul, u2, u3, u4, u5, u6, u7, us8 , x1, x10, x13, x14, x17

int wl;
Confluent term rewriting l unsigned xm = mm getesr();
_mm setcsr(_xm & O0xffff0000 | 0x00004fcO);
Optimized abstract u5 = _mm setl pd(0.0);

uz2 _m:m_cvtps _pd (_m:m_addsub _ps (_m:m_setl _ps(FI.T_MIN) ’ _m:m_setl]
code ul = mm set pd(1.0, (-1.0));
. for(int i5 = 0; i5 <= 2; i5++) {
Recursive descent l X6 = mm addsub pd(mm setl pd((DBL MIN + DBL MIN)), mm lo
x1 = mm addsub pd(_mm setl pd(0.0), ul);
X2 = mm mul pd(xl, x6);
C code x3 = mm mul pd(mm shuffle pd(xl, x1, MM SHUFFLE2(0, 1)),
x4 = mm sub pd(mm setl pd(0.0), mm min pd(x3, x2));
u3 = mm add pd(mm max pd(mm shuffle pd(x4, x4, MM SHUFF

Carnegie Mellon

O R

Inspiration: Symbolic Integration

= Rule based Al system
basic functions, substitution

= May not succeed
not all expressions can be
symbolically integrated

= Arbitrarily extensible
define new functions as integrals
I'(.), distributions, Lebesgue integral

= Semantics preserving
rule chain = formal proof

= Automation
Mathematica, Maple

Table of Integrals
SR z
BASIC FORMS Cboriaores
(1 J’.t"([,\‘:;l,r"" I JA\ l)I E L O]
INTEGRALS, SERIES,
1
@ [Ldv=nx \ND PRODUCTS
3 Jud\-:ur—Irdu R, €)

4) Ju(.x‘ Wi{x)dx =nu{x)wx) -~ IN 2’ (x)dx

RATIONAL FUNCTIONS

1 1
(5) J—d.l‘:-lmu.uh]
ax+h a

Wolfram
Mathematica

d

1
I 3]:= J: -
a?cos[t]?+b?sin[t)?

Cul[F]=

at

fn 1

I 33 = - - - -

42 [ennfut)z . b2 ent_e“nt)E
2

21

Cu[zE- 0

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Outline

" Introduction
= Specifying computation

= Achieving Performance Portability

SPIRAL and Generative and Agentic Al

= Other Current Work

M. Pischel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo:
SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE Special Issue on "Program Generation, Optimization, and Adaptation," Vol. 93, No. 2, 2005, pages 232-275.

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Piischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/si-spiral.pdf
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Today’s Computing Landscape

1 Gflop/s = one billion floating-point operations (additions or multiplications) per second

Intel Xeon 6980P

16 Tflop/s, 500 W

128 cores, 2 — 3.9 GHz
2-way—16-way AVX-512

Snapdragon 8+ Genl
15 Gflop/s, 2 W
8 cores, 3.2 GHz
A730 GPU, Hexagon DSP

IBM POWER10
7.5 Tflop/s, 130 W
30 cores, 4 GHz
4-way VSX-3, MMA

Nvidia H200 Cerebras WSE3
34 Tflop/s, 700 W 12.5 Pflop/s 20kwW
16,896 cores, 1.41 GHz 900,000 cores

2 Pflop/s FP16 tensor cores

Dell PowerEdge R960
30 Tflop/s, 8 TB, 1.5kW
4x 60 cores, 1.9 -3.5 GHz
2-way — 16-way AVX512

El Capitan Google Willow
2.7 Eflop/s, 30MW 105 qubits

43k 24-core CPUs + 43k GPUs

#1 in Top500

Carnegie Mellon

{7 ENENEERRE

Platform-Aware Formal Program Synthesis

Model: common abstraction
= spaces of matching formulas

abstraction

ON

abstraction

\

}
} defines

) L

rewriting

search
C N\

algorithm

pick

Ip A, ©
~—
smp(p,u)

architecture
space

space

(DFT2@I) TS (I ®(.

Architectural parameter: e Kernel:
Vector length, optimization problem size,

#processors, ... algorithm choice

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Some Application Domains in OL

. . .
Linear Transforms Software Defined Radio
DFT, — (DFT,QLyp) ThI,DFTy)LY, n=km
DFTn — Pu(DFT,®@DFT0)Qn, n=km, gcd(k,m) =1 010001 {40311 1o) 1111531k 1110000110011100 / 1110010110101100 [ERVIIS2 MM 010001
DFT, — RI'(I; ®DFT,_1)Dp(l; ®DFT,_1)Rp, p prime encoder decoder
DCT-3; — (In®Jm) L™ (DCT-31(1/4) & DCT-3m(3/4))

Im 0®—Jp-1 L 2K-1
'(F2®Im)[%(Il@glm)}, n=2m FKF—’ H ((IQK 2 ®j Bp_ Z])LQK 2>

DCT-4, — S8,DCT-2, diadg<)n(1/(2Cc0s((2k + 1)7/4n))) =1

IMDCTQm — (Jm DBImDIm ® Jm) <<|:_1:| ® Im) D < :1:| 024 Im>) Jom DCT—42m

F
. Frrv— H ((IzK 2/y®]1|‘ BF ljl) (LQK 27_1”))
=1
WHT2k — H (12k1+"‘+ki—1 ®WHT2}% ®12ki+1+'“+kt)’ k=ki+ -+ kt !
=1

= .
DFT, — F» B T = mlndU(Tr/\ + /B/\—>U77TB + ﬁB—)U)
DCT-2, — diag(1,1/v2)F» Y|y = ming, (ma + Ba—v, 73 + Bp_v)
DCT—42 — J2 R137T/8

PDEs/HPC Simulations Synthetic Aperture Radar (SAR)

182 et -
- -
- .-
S E S :
91 et te g Interpolation 1 2D FFT t ?
- *—9 y . . .
¥ e t.’
99 . ..
99 198
198

SARL«m—nxn — DFTonxnolnterprym—nxn
DFT,xn (DFT,®I,) o (I, @ DFTy)
Interprxmonxn — {Interpi_, ®;In) o (I ®; Interp,,)

!

-

$:R* 5 R n—2
Interp,,s — | €D InterpSegy, | @ InterpSegPrunedy, 4
" Q 1 . » ’
d(7) = — +o(#> as ||Z]| = o0 i=0
4| || ||Z] . 1
InterpSeg;, — G"Jﬁ'"* o iPrunedDF T, _qyn 0 (—) oDFT,
Q= [pdz n
D

Carnegie Mellon

L BNENEERNE

Formal Approach for all Types of Parallelism

Multithreading (Multicore)
Vector SIMD (SSE, VMX/Altivec,...)
Message Passing (Clusters, MIPP)
Streaming/multibuffering (Cell)
Graphics Processors (GPUs)
Gate-level parallelism (FPGA)

HW/SW partitioning (CPU + FPGA)

Ip @”A,una L%n@)]ﬁ

—

A®L, LY, L2, LY
isa isa isa

2 _
b ®)An, Ly @12

all-to-all

n—1
1=0
n_llr
[A L&A, L"
- L
i=0 bram

fpga fpga fpga fpga

Carnegie Mellon

L BNENEERNE

Modeling Hardware: Base Cases

= Hardware abstraction: shared cache with cache lines

» flka—w@
smp(p,u)

= Tensor product: embarrassingly parallel operator

= - = Processor 0
— A
y T (Ip ®A> (x) = - =Processor2
= - = Processor 3
X y
= Permutation: problematic; may produce false sharing
g - 3
— - ~n
Yy — L4 (.CU) .%l
e
. T
B -
X y

Carnegie Mellon

L BNENEERNE

Example Program Transformation Rule Set

4}5—> A B

S~ N~
smp(p,un) smp(p,u) smp(p,u)

An @1y — (Li? 81y,) (1o ®(Am @ 1,)) (L3? @1)

smp(p,u) smp(p.0)
(Ip@ Lmn/p) (Lpn®1m/p)
Lmn Y srnp(p,,u) Smp(p,,u)
- pm mn/p
SMP(p,u) (Fm ?In/p)A(@ I?,m) Recursive rules
L smp(p,up) smp(p,u)

Im ®@A4n — p® (Im/p ®An)
smp(p,u)
(PRL) — (P®L,,)8L

Base case rules
smp(p,u)

Carnegie Mellon

Autotuning in Constraint Solution Space

DFTg

AVX 2-way — —— —— DFT,
_Complex double AVX(2-way C)
Base cases Transformation rules Breakdown rules
AMNG I (I @A™ MLE" (1, SL (A" @ L)) DFT,y, —(DF Ty @ Iy) T
13 L @1,) (Im ® DFTy,) L™
vec(2) LY 5L} ®L)(,,, 8L, DFT, — F»
T?n ATmexm ®1I, _)(Amxm ® In/r/) ® 1,
N —
vec(2)

((F20L)T3(L @F)L3EL) T8 (L L (F28L))(L3SL
~~ ~~
vec(2) vec(2)

Expansion + backtracking

O R

2-OL (loop)
expression

v

Optimized Z-OL
expression

V

Abstract code

V

Optimized abstract
code

V

C code

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Translating an OL Expression Into Code

Constraint Solver Input: DFTg
N —
AVX(2-way C)

OL specification

Output =

Ruletree, expanded into

OL ExprESSion: Recursive descent
((F2®12)T§'(12 ®F2)L3& I,) 3?2 (12 ® \Ié/ (Fo® 12)) (L%@’ Io) 2-OL (loop)

expression

vec(2 vec(2
Z-OL: ()‘ () Confluent term rewriting‘

1 1 Optimized Z-OL
2 = i
. . . . expression
(D (S%2®(J)2F2Mapm._>w2’ﬂ+3 %2®(J)2))3 (S(J)2®’L2F2G%2®(J)2)>®12.' e .
j=0 4 j=0 Recursive descent ‘
Abstract code
c Code: ‘ Confluent term rewriting‘
void dft8(_Complex double *Y, Complex double *X) { Optimized abstract
__m256d s38, s39, s40, s41,... code (icode)
m256d *al7, *al8; .
217 = ((m256d *) X); Recursive descent
s38 = *(al7);
s39 = *((al7 + 2));
t38 = _mm256_add pd(s38, s39);
t39 = mm256_sub _pd(s38, s39);

s52 = mm256_sub _pd(s45, s50);
*((a18 + 3)) = s52;

Carnegie Mellon

L BNENEERNE

Symbolic Verification for Linear Operators

m Linear operator = matrix-vector product
Algorithm = matrix factorization

I I [e | e |

S S I T | AU IO | I TS IR | AV ?
1 1 -1 1 - =1 - -1 e ottt - o
= A N R D | E 1 | R S U | ER.

DFT, = (DFT,®1,)Ta(I, DFT,) LA

[1
[— [— [— [—

m Linear operator = matrix-vector product
Program = matrix-vector product

1 1 1]
g -1 =3].
-1 1 -1

-3 -1 7|

= ? DFT4([0,1,0,0])

=)

I 1
el e

Symbolic evaluation and symbolic execution establishes correctness

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Outline

= Introduction

= Specifying computation

= Achieving Performance Portability

= SPIRAL and Generative and Agentic Al

= Other Current Work

S. Rao: LibraryX: A Framework for Cross-Library-Call Optimization, Ph.D. Thesis, 2025

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van
Straalen, P. Colella: FFTX and SpectralPack: A First Look, Workshop on Parallel Fast Fourier Transforms (PFFT).

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

LLM Target: Active HPC Libraries as DSLs

Libraries/standards as DSL

BLAS1/2/3, LAPACK
GraphBLAS
FFTW, FFTX, SuperLU

OpenMP, MPI, OpenACC

Boost, C++ STL, PETSc
NumPy, SciPy wrappers

@ViDIA P cmes caps?

B oo <>

Other C++ Code

C++ SPIRAL Object

SAR: : compute ()

C++ SPIRAL Object

FFT: : compute ()
::init ()
::reconfig()

Code Generation/JIT

Paradigm
Plug-In:
Multicore

Paradigm
Plug-In:
SIMD ISA

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics

FFT Solvers FFT Codelets
OpenMP AVX2

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Piischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.

Special Issue on From High Level Specification to High Performance Code

S. Rao, A. Kutuluru, P. Brouwer, S. McMillan, F. Franchetti: GBTLX: A First Look, IEEE High Performance Extreme Computing Conference (HPEC), 2020.

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen, P.
Colella: FFTX and SpectralPack: A First Look, Proceedings of the IEEE, Vol. 106, No. 11, 2018.

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Agentic Al: High Level Reasoning in Compilers

C++ MPI + CUDA program

source

High level

optimization

Low level
optimization

ISA level IR

Backend
optimization

Object code

Python NumPy/SciPy program SnowWhite

= DSL program = specification

High Level Reasoning

o

T Introductlon to
Tensor Analysis
and the Calculus
of Moving
Surfaces

source

LINEAR \
ALGEBRA]

W

i
A]

sreven 1. eon -
Discrete * [—_
Mathematics
Combinatorial

Opnmlzanon

High level
optimization

LLIR

LLIR
Low level

optimization

ISA IR &

ISA IR

Backend

optimization Understands and manipulates

algorithms, data flow,
computational patterns, and
Object code motifs
(formerly known as dwarfs)

SPIRAL serves as Al Agent in connection with standard compilers

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjS1-en1LHXAhXqx4MKHckIBvkQjRwIBw&url=https://www.booktopia.com.au/applied-functional-analysis-j-tinsley-oden/prod9781498761147.html&psig=AOvVaw1dWn88SfVBW39tHn_ocR3g&ust=1510322588501025
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi1oc7O1bHXAhWk4IMKHZp8BnoQjRwIBw&url=https://www.amazon.com/Graph-Theory-Dover-Books-Mathematics/dp/0486498069&psig=AOvVaw1XxiQq8GpjvXiJPj9hhM9p&ust=1510322952061904
https://books.google.com/books?id=Uiy-CAAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjgudmQ1rHXAhWJ54MKHexSCsUQjRwIBw&url=http://www.ems-ph.org/doi/10.4171/111&psig=AOvVaw2A8ZxSKKzbv2BWpQknH6PI&ust=1510323087512521
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi-1YG51rHXAhWq54MKHftOC8MQjRwIBw&url=http://www.or.uni-bonn.de/~vygen/co.html&psig=AOvVaw0BcRj13adlkVsvuE3_JIp7&ust=1510323176572957

Carnegie Mellon

O R

LibraryX: SPIRAL as Active Library Backend

Other C/C++ Code

FFTX call site
fftx plan(..)
fftx execute (..)

FFTX call site
fftx plan(..)
fftx execute (..)

Paradigm

Plug-In:
GPU

Paradigm
Plug-In:

Shared memory

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics

Code module 1 Code module 2

Pruned FFT I/O Pruned
OpenMP + AVX2 Convolution

CUDA

Extensible platform
and programming
model definitions

Core system:
SPIRAL engine

Automatically
generated tuned
components and
special cases

LibraryX and C++/Python/Julia SPL APl enable SPIRAL as Agent for GenAl

Carnegie Mellon

. .) ENEEERRE
SPIRAL as Guardrail for Generative Al

~ — O > ‘

! C FFT without recursion x + ‘

|

|« C @ chatopenai.com/c/f165d0a4-137d-45b6-b3d3-3e88df8850bd G 2 W Bo@ sz 0@
. ChatGPT ChatGPT 4 &

85 Explore © You

Please provide a C implementation of an fast Fourier transform (FFT).

Only use ANSI C, and only provide the function. No need to provide the main function.
Do not use recursion; only use for loops and while loops and if/then/else.

Recursive Radix-2 FFTinC Use a fast O(n log n) algorithm.

C Recursive Radix-2 FFT Do not use the complex data type, stick with real arithmetic and double.

New chat

AVX2 FFT Implementation in C P

(&) ChatGPT
FFT Implementation with AVX2 Certainly! Implementing the Fast Fourier Transform (FFT) directly in C without using recursion and the
Real Convolution Using FET complex’ datatype requires some care. We'll represent complex numbers with two arrays, one for real

parts and one for imaginary parts.
Real Data FFT Convolution

C NTT Implementation (iterative Here's a C function that implements the FFT using the Cooley-Tukey radix-2 decimation-in-time

algorithm:
New chat

Recursive Radix-2 FFTinC

C RDFT Implementation Explana
C FFT without recursion

New chat TWO_PI (6.283185307179586476925286766559)
New chat

C Implementation of Inverse DCT * real, * imag,
New chat
Il (n&(n-1)) 1=0) {
New chat

New chat

C FFT Implementation Example i, §, k, m;
blockSize, blockEnd;

FFT Cooley-Tukey Algorithm Exa

New chat

3 1< nj i) {

FR Franz Franchetti

ChatGPT can make mistakes. Consider checking important information

Carnegie Mellon

Q) B

ChatGPT, Meet SPIRALProver

Please provide a C implementation of an fast Fourier transform (FFT).

Only use ANSI C, and only provide the function. No need to provide the main function.
Do not use recursion; only use for loops and while loops and if/then/else.

Use a fast O(n log n) algorithm.

Do not use the complex data type, stick with real arithmetic and double.

Keep real and imaginary parts in one data vector.

B Command Prompt — O x
spiral>
\

\Spiral\spiral-software\namespaces\packages\bluestone\nrproof\ChatGPT\fft>spiralprover fft.c .

blockEnd = i + blockSize / 2;
for (j = i; j < blockEnd; j ([. -) . e s o
double temp; Symbolically executing fft(data, n), n = 8
tReal = uReal * data[2 * j + bloc ze / 2] - uImag * data[2 * j + blockSize'y/ 2 | . _ .
tImag = uReal * data[2 * j + bloc / 2 + 1] + ulmag * data[2 * j + bla «Size ‘;r[.‘-'lf'Ell.}
data[2 * j + blockS / 2] = data[2 * j] - tReal; o . o w m m om m w _ T R - CEL .
datal2 * § + blo 2 1] - datal2 * § + 1] - tInag; spiral> spiral> > > > » » Found sematics for function f+t:
data[2 * j] += tRea Jel 4
data[2 * j + 1] +- tImag; RC(
temp = uReal * wReal - uImag * wlmag;) e A
ulmag = uReal * wImag + ulmag * wReal; _ DFT Lb" ?}
uReal = temp; }

il syl syl syl el SPIRAL found the semantics of
' f££t () via static analysis

-software\names, \ A es e\ £\ GPT\fft> v

Carnegie Mellon

Also: Dusty Deck, Meet SPIRALProver O R

#include <math.h>

> > Found sematics for functi fourl: 2 #define

void fourl(float

AP(a,b) tempr=(a);(a)=(b);(b)=tempr

data[], unsigned long nn, int isign)
{

unsigned long n, mmax, m, j, istep,i;

double wtemp, wr, wpr, wpi, wi, theta;

float tempr, tempi;

spiral

n=nn << 1;
3=1;

for (i=1;i<n;i+=2){

SPIRAL found the semantics of A
fourl () via static analysis : }

m=n >> 1;

SWAP(data[j+1],data[i+1]);

- 7 hile (m >=2 && § > m) {

i-=m

4 f\ y=FFT(x) ‘o
of I I

1 xHy:T°x J'+=|m;

]

\

mmax=2;

o ‘ o .
W | DFT, = [e KMy,

Eil) 100 25 while (n > mmax) {

Frequency {Hz)
istep = mmax << 1;
theta = isign*(6.28318530717959/mmax);
Command Prompt wtemp=sin(@.5*theta);
wtemp=sin(@.5*theta);
wpr = -2.@0%wtemp®wtemp;
wpi = sin(theta);
wr=1.8;
wi=0.0;
talj - 1] - for (m=1;m<mmax;m+=2) {

tempi * data[j] + wi *

tal[j - 1] ata[i - 1] - tempr;

ta[j] ta[i] - tempi;
data[i - 1] += tempr;
data[i] += tempi;

for (i=m;i<=n;i+=istep) {
j = i+mmax;
tempr = wr*data[j]-wi*data[j+1];
tempi=wr*data[j+1]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;

data[i+1] += tempi;

i*wpi+wr;

(wtemp=wr)*wpr

is wpr+wtemp*wtemp*wpi+wi;

spiral> spiral> > > » > > Found sematics for function fourl:
RC(

DFT(16, 1)
)] 1
spiral> ’

mmax=istep;

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Early Results: HPEC and POPL Workshop

Towards Automated Reasoning Chains for
Verification of LLM-Generated Scientific Code

Quentin Osch

Towards Semantics Lifting for Scientific Computing:
A Case Study on FFT

Naifeng Zhang Sanil Rao Mike Franusich
Carnegie Mellon University ~ Carnegie Mellon University SpiralGen, Inc.
Pittsburgh, USA Pittsburgh, USA Pittsburgh, USA

Mike Franusich Franz Franchett
Carnegie Mellon University
Pittshurgh, U854
franzf @ cmu.edu

Naifeng Zhang

H i Franz Franchetti

Carnegie Mellon University
Pittsburgh, USA

Camegie Mellon University Carmegie Mellon University SpiralGen, fne.
Pittshurgh, USA

Pittshurgh, USA
goschatz @cmu.edu

Piutshurgh, USA
mike_franusich @ spiralgen.com

naifengz@cmu.edu sanilr@andrew.cmuedu mike franusich@spiralgen.com franzf@andrew.cmu.edu
Abstract constrained boundaries. We develop a novel extension to

Abstract—With the rise of Large Language Model (LUM) [Consinuous B 4—| Diserete B 4] Floating Point [SPL | The rise of automated code generation tools, such as large the SPIRAL system [6, 16], which is equipped with sym-

generated code, including in domains like sc i computing . language models (LLMs), has introduced new challenges in bolie execution and theorem-proving capabilities. Through

ensuring not only syntactical, but also mathematical corre - ensuring the correctness and efficiency of scientific software, an LLVM-to-SPIRAL parser, we import LLM-generated sci-

neas, hos hecoous 2 eritieal task. Tradiciooal faroul methods ™ icularly i lex s, whes 1 stabili entific kernels into SPIRAL and derive their semantics using

approsches often struggle with the ambiguity of floating-podnt o particularly in complex kernels, where numerical stability, Ny -

code, and full symbolic execution is extremely costly and limited. ol domain-specific optimizations, and precise floating-point SPIRAL’s formal framework and engine.

We propose a chain-of-reasoning approach that iteratively lifts [Semantses Liftung — arithmetic are critical. We propose a stepwise semantics lift- Contributions. To summarize, this paper makes the fol-

basic semantics from code into the SPIRAL system and then Numerieal analysis =] 1 usi tended SPIRAL fr: ork with lowing contributions:

establishes numerical equivalency to the desired mathen I e (0 Ing approach using an extence ramework wi

operation. Here, we leverage the ample mathematical kiowl
already formalized in SPIRAL to enable the system to recognize
not just different implementations of the same algorithm but
fully separate approaches to solving the given problem. The
«chain establishes tight error bounds on the outpat of ghm Llldl‘
with respect to the true i solution it
qnanlllnm; all sources of error. We d.ennnblr..(: this .lppnun.h
blishing th of a solver for

.s.lmp]: 1-dimensional Poisson problem.

Index Terms—Numerical analysis, partial diffevential equa-
tions (PDEs), scientific computing, SPIRAL, large language
mrodels (LLMs)

L INTRODUCTION

Large Language Models (LLMs) have increasingly become
a widespread tool for neural code generation, despite their
tendency towards hallucinations and mistakes [1], [2]. While
improvements have been made to their ability to generate
semantically correct code, this is ofien insufficient. especially
when generating code in the space of scientific computing.
Here, numerical errors in algorithm implementation can be
easy to make, hard w catch, and even more difficult w
diagnose, especially with the added complexity of evaluating
floating-point code. This can be a problem not just when
attempting to generate new scientific kernel code as explored
by Valero-Lara et al. [3], but also when translating code written
in languages such as FORTRAN 0 more modern codebases
as is the goal of projects such as TRACTOR [4].

Teasomng

Fig. 1: Logical overview of the core steps in the pipeline
connecting C code to the true, continuous solution of the given
problem over the real numbers extending prior work [5].

Previous work [5] leven the SPIRAL svstem [6] o
perform semantice lifting based on symbolic execution and
program transformations. By restricting the problem domain to
those understood by SPIRAL, Fast Fourier Transforms (FFTs)
can be lifted from recursive C |m|1]c|ncnt.mnm Reversing
SPIRAL’s rules-based, Iti-tiered code em
that traditionally lowers high level semantics into functioning
code, the system can iteratively fuse operations into higher
level functional blocks, until finally leveraging SPIRALS
database of linear transforms to recognize the components of
a FFT. Due to the symbolic execution used tcsr the I\mcm
minimal ambigui -ed by floating
and equivalency un be established. The m]md.& mm)duu.d
in this paper extend that work to support mose complex

h | algorithms isting of a network of fi
blocks.

Also utilizing the SPIRAL sysiem, the pipeline follows a
similar framework of exploiting symbaolic execution and the
database to rec even higher level operations. However,
anplcx scientific computing code comprised of numerous

| aperations beyond ubiqui perations like the

Leaning on the 11-known insight in Ty s and
computer science that proving a solution correct is far easier
than finding one, we propose a multi-step. end-to-end system

to verify the numerical correctness of given code.

This mas is hased upon wark supported by dh L \ I)m:\nn.m af
! I

nder Agm HRODL 12450517
Approved for public release: distribution is unlimited.

FFT are infeasible to merely lift, as SPIRAL would need
o be populated with an enormous database of all pmublc
T and their it M thise
may be implemented in m.ul\cm.uu.ully istinct manners.
We propose @ pipeline that can recognize and verify these
more complex by © iz 2 chains
as follows. In Section III, the chain starts with basic C
code and uses previous work to extract and verify basic

5]

.

)1vl [cs.PL] 1

92(

01.0¢

J

2

r Xiv

d

symbolic execution and theorem proving to statically de-
rive high-level code semantics from LLM-generated kernels.
This method establishes a structured path for verifying the
source code’s correctness via a step-by-step lifting proce-
dure to high-level specification. We conducted preliminary
tests on the feasibility of this approach by successfully lift-
ing GPT-generated fast Fourier transform code to high-level
specifications.

Keywords: Semantics lifting, static analysis, scientific com-
puting, fast Fourier transform, SPIRAL

1 Introduction

The grawing adoption of neural-based code generation tools,
such as large language models (LLMs), presents significant
challenges in ensuring the correctness and efficiency of sci-
entific software [10]. Although LLM-generated code may
be syntactically valid, it often falls short of meeting the rig-
orous correctness and performance standards required for
complex scientific kernels. Scientific computing demands nu-
merical stability, domain-specific optimizations, and accurate
floating-point arithmetic. which are challenging to achieve
in code generated without domain expertise. By deriving
the semantics of generated kernels statically fat compile
time) for cases with unknown (runtime) size parameters, we
can identify potential bugs, inefficiencies, and performance
bottlenecks before deploying the code. This statically de-
rived information can also be fed back into neural-based
code generation tools to iteratively improve the generated
code. However, scientific computing poses unique challenges
for static analysis tools. Accurate handling of floating-point
arithmetic requires managing rounding errors and numerical
precision, while pointers, recursion, and transcendental func-
tions like sine and cosine further complicate static analysis.
To address these issues, this work proposes stepwise seman-
ties lifting as an early-stage experimental solution within

1. An experimental approach, stepwise semanties lifting,
for statically extracting high-level semantics from sci-
entific kernels.

2. Anend-to-end demonstration of the proposed approach
by lifting GPT-generated fast Fourier transform code
to its high-level specification

2 Background

In this section, we provide background on SPIRAL, a formal
code generation system, and the target scientific kernel: the
fast Fourier transform (FFT).

The SPIRAL system. The SPIRAL system [16] originated
as an automatic performance-tuning system for signal pro-
cessing algorithms, particularly focusing on FFT algorithms
This focus stemmed from the availability of a formal frame-
work (the Kronecker product formalism [13, 19]), which
enables capturing and manipulating FFT algorithms in high-

level mathematical representations. Over time, this represen-
tation was generalized to encompass a broader range of al-
gorithms [5], including both sparse and dense mathematical
computations. SPIRAL has thus evolved into a comprehen-
sive code generation system, capable of taking high-level
specifications and producing optimized implementations for
target platforms.

SPIRAL dialects. The SPIRAL system consists of three
main components used in a stepwise code generation process:
1) Signal Processing Language (SPL) [21], ii) 2-5PL [9], and 1ii)
internal code (icode) [6]. SPL, the top-level domain-specific
language (DSL), describes the mathematical semantics of ker-
nels and the functional data flow of the target algorithm. The
lower-level DSL, Z-5PL, captures loop abstractions, while
icode serves as an abstract code representation adaptable to
different code syntaxes. As shown in Figure 1, each layer
of abstraction is connected by a rewrite system that applies
recursive descent followed by confluent term rewriting. For
further details, we refer readers to the respective citations.

Q. Oschatz, N. Zhang, M. Franusich, F. Franchetti: Towards Automated Reasoning Chains for Verification of LLM-Generated Scientific Code
IEEE High Performance Extreme Computing Conference (HPEC), 2025.

N. Zhang, S. Rao, M. Franusich, F. Franchetti: Towards Semantics Lifting for Scientific Computing: A Case Study on FFT
Theory and Practice of Static Analysis Workshop (TPSA), in conjunction with the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2025.

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

Towards SPIRAL+LLM for Quantum Computing

'é Circuit Description Y
1x4 Lattice Topology
- ~ - '
QFT on 0,3,1 CNOTono, 2
N J o /
A /
e Embed N
Reorder Junction Junction Reorder Reorder Junction Junction Reorder
0132 ' ' 0213! ‘0213 ' ' 0132 0213 ' '0123 ! '0123 ' ! 0213
- . 1 1 ey 1 1 - H ! 1 1 1 O
= = - - L A .
1 ' 1 ' 1]]]
—_— T T L L T T U=
" _ " i _ o
' e Rewrite N
defined as a
sub circuit
) &
J— Gl = X : X
i
(N S
[[2.1,0.00. Apply a 3-qublt Fourler
[1,0,1.00 transform to qubits 0,3,1 Apply a OHOT from gubltd -= 2
[0.1,0,1],

[0,0,2,0]]) —
gCircfarch, [([@.,3.1]. gFT), ([@,2], gCNOT}]):

—

gEmbed([®,3.,1], arch, gFT)}) * gEmbed{[®,2], arch, gCNOT)

Reord([®,1,3,2], arch, Fy*Junc([®&,2,1.3], F}"Tensor{qFT(3), I{2)})*Junc([®,2,1,3], B)*Reord([®,1,3,2], arch, B)
Y T 4

. [[o, 1,01, -
Swap([3.2]. 4] 11,011, Swap{[3.2]1., 4}
10,1011
gCirc{subarch, [([8], gHT), . . .1}:
Tensor (I(4), (CHOTCB-=1)=CHOT {1- =BY*CHOT (B->1)3)) : Tensor{I(4}, {CHOT({A->1)*CNOT(L->@)*CNOT{B-=1}13
Tensor{I{4), (CNOT(L1->8)*CHOT(@->1)*CNOT(L->@)%) e ! Tensor(1(4), (CNOT(L-=@)*CHOT(8->1)*CNOT(1->8)))

SPIRAL C++/Julia/Python SPL API + Code Llama + SPIRAL/GAP Reasoning

S. Mionis, F. Franchetti, J. Larkin: Optimized Quantum Circuit Generation with SPIRAL
IEEE High Performance Extreme Computing Conference (HPEC), 2021, Outstanding Student Paper Award.

D. Sun, N. Zhang, F. Franchetti: Optimization and Performance Analysis of Shor's Algorithm in Qiskit
IEEE High Performance Extreme Computing Conference (HPEC), 2023.

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

FP64 Emulation on Non-FP64 ML Accleerators

10%4 SoftFloat on Trn1.32 all-engine

#define _fp64int64_add(_ce, _cm, _ae, _am, _be, _bm){ \ SoftFloat on Trn1.32 a”*engine + PISA
__intl6_t diff0 = _subw((_ae), (_be)); \ Intel i7 FPU
__intl6_t _diffl = _subw((_be), (_ae)); \
_Bool _flag = _cmplsw((_ae), (_be)); \
__intlé_t _shamt = _selw(_flag, _diffl, _diff0); \
__int64_t _sm = _selq(_flag, (_am), (_bm)); \
__int64_t _km = _selq(_flag, (_bm), (_am)); \
_sm = _sarq(_sm, _shamt); \
_sm = _selq(_cmplw(_shamt, 64), _sm, 0); \
_Bool _cmc; __uint64_t _sum; \
_addqgc(_sum, _cmc, _km, sm); \
_Bool ovf = _sltq(_andq(_xorq(_sm, _sum), \

_xorq(_km, _sum)), 0); \

(_cm) = _selq(_ovf, _shrqdq((uinté4_t)_cmc, _sum, 1) y _sum); \ 10° FirSt Tranium FP64 TESU":S

(_ce) = _caddw(_selw(_flag, (_be), (_ae)), 1, _ovi); \

102.

101,

Runtime in ms (log10 scale)

510 511 512 513 14 515 516 517 18 519 520

DFT8 Batch Size

Nvidia 5090
“compatibility-only” FP64 Cerebras WSE3 Amazon Tranium 2
no FP64 no FP64

Carnegie Mellon

Q) B

Outline

" Introduction

= Specifying computation

= Achieving Performance Portability

= SPIRAL and Generative and Agentic Al

= Other Current Work

Carnegie Mellon

EIectrlcaI&Com uter
L ENGREERRE

FFTW with Hardware Codelets

Software Layer Radix-8 Twiddle Codelet Test Chip
(OOO0OOCCOOC OO

LLCLULUOOOOE

LOOO0e000000000000

Example: Radix-8 Twiddle Codelet
e 1 S| comanegeen
. Bank 0 i .

Configurable Codelet Datapath -
L | Transposer LD_

Memory —>| FFT Datapaths
Banke M— | (radix2-16) Ding | |Sitanspoas:

e : Joae-10

L] | T
: * Jlan:s:

mr'::' «—] Descriptor || Descriptor

G‘"Jnn"’" Decoder Memory) ﬂ Q ‘D‘ ﬂ

Execution Time [us]

[|
10.00 cuFFT on GPU

W LibraryX-ASIC on Accel

8 64

4096

N\

&

FFT Size

API: FFTW. Infrastructure: SPIRAL/FFTX. Performance: on chiplet/ASIC

S. Rao, L. Tang, F. Franchetti: LibraryX-ASIC: A First Look, International Parallel and Distributed Processing Symposium (IPDPS),
Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS), 2025.

Carnegie Mellon

Electrical & Com uter

(ENGINEER
Real Science Applications + Other Motifs
GX/Fusion

3D Bracket Operator

nnnnnnnnnnn

mPerim NS

(U. of Md, CMU, LBNL)

P3M Method (MLC):
Cabana / Kokkos + FFTX on a GPU

5N [1.1e-04
5y’ | 8.5

— 6e-5

4e-5
[2e-5
0.0e+00

3D Hill’s Vortex (ORNL, Stanford, LBNL)

Structured Grids: Proto

Vorticity Magnitude

B: data_4780.hdfS
Time 521327

Solar wind (UAH, GSU, LBNL)

Carnegie Mellon

Q) B

SPIRAL: Al for High Performance Code

Algorithms Correctness

i Tools for Practical
I Software Verification
int dwmonitor (float *X, double *D) { o ‘
_ ml28d ul, u2, u3, u4, u5, ué, u7, ud,... \ 8 Qv
unsigned xm = mm_getesr() ; /| &

_mm_setesr(_xm & Oxf£££0000 | 0x0000dfcO) 5
u5 = _mm_setl pd(0.0); performance

uz m_Mps_pd(_m_addsub_ps(

_rm'n_s;tl_ps(FLT_MIN) , _mm_setl ps(X[0]1))) I
ul = _mm_set _pd(1.0, (-1.0)) ‘Im
for (int i5 = 0; i5 <= 2; i5++) {

x6 = mm_addsub_pd(_mm setl pd((DBL MIN QED'
+DBL_MIN)) 0 _mm_loaddup_pd(&(D[iS] Y)Yy
_rm'n_addsub_pd (_rrm_setl_pd(0.0) , ul) ;

_mm mul pd(xl, x6);

%1
x2

Elementary
Linear Algebra

130

Hardware

Carnegie Mellon

(). Electrical & Computer
€\ ENGINEERING

PROJECT

& spiral _ o «

m Open Source SPIRAL available
m non-viral license (BSD)
m Commercial support via SpiralGen, Inc.

m www.spiral.net, www.spiralgen.com

m Developed over almost 25 years

)efaults), SpiralDefaults);

m Ongoing open source development
DOE Aid4Science, SciDAC, Base

RSOSSN i) EEDINGSSIEEE ®
m FFTX 1.0 release ProceedingsrIEEE e
. rC g}x—Lu\'ul Specification to AND PLATFORM Al‘)gl;;l:"l:(l):lﬂo"'
www.spiral.net/software/fftx.html High Performance Code

Encyclopedia of
Parallel Computing

m SPIRAL Software Foundation
Next step in the evolution, ETA 2026

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Pischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen, P.
Colella: FFTX and SpectralPack: A First Look, IEEE International Conference on High Performance Computing, Data, and Analytics, 2018

http://www.spiral.net/
http://www.spiral.net/
http://www.spiralgen.com/
http://www.spiral.net/software/fftx.html
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

	Slide 1: SPIRAL: AI for High Performance Code
	Slide 2: Algorithms and Mathematics: 2,500+ Years
	Slide 3: Moore’s Law in Practice
	Slide 4: But: Language Adoption is Slow
	Slide 5
	Slide 6: AI For Performance Engineering
	Slide 7: Example: Hockney Convolution for PDEs
	Slide 8: SPIRAL: AI for High Performance Code
	Slide 9: SPIRAL’s History: The Long Arc of Math in CS
	Slide 10: Outline
	Slide 11: SPIRAL: AI for Performance Engineering
	Slide 12: OL Operators
	Slide 13: Breaking Down Operators into Expressions
	Slide 14: Loop and Code Level Rule System
	Slide 15: Putting it Together: One Big Rule System
	Slide 16: Inspiration: Symbolic Integration
	Slide 17: Outline
	Slide 18: Today’s Computing Landscape
	Slide 19: Platform-Aware Formal Program Synthesis
	Slide 20: Some Application Domains in OL
	Slide 21: Formal Approach for all Types of Parallelism
	Slide 22: Modeling Hardware: Base Cases
	Slide 23: Example Program Transformation Rule Set
	Slide 24: Autotuning in Constraint Solution Space
	Slide 25: Translating an OL Expression Into Code
	Slide 26: Symbolic Verification for Linear Operators
	Slide 27: Outline
	Slide 28: LLM Target: Active HPC Libraries as DSLs
	Slide 29: Agentic AI: High Level Reasoning in Compilers
	Slide 30: LibraryX: SPIRAL as Active Library Backend
	Slide 31: SPIRAL as Guardrail for Generative AI
	Slide 32: ChatGPT, Meet SPIRALProver
	Slide 33: Also: Dusty Deck, Meet SPIRALProver
	Slide 34: Early Results: HPEC and POPL Workshop
	Slide 35: Towards SPIRAL+LLM for Quantum Computing
	Slide 36: FP64 Emulation on Non-FP64 ML Accleerators
	Slide 37: Outline
	Slide 38: FFTW with Hardware Codelets
	Slide 39: Real Science Applications + Other Motifs
	Slide 40: SPIRAL: AI for High Performance Code
	Slide 41: SPIRAL 8.5.3 and FFTX 1.0

