_ HPC-GENIE Project HP:
® . https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

| HPC-GENIE: A Multi-
= Agent Code Generation
T Platform Project Based
on Context Engineering

Takahiro Katagiri
Nagoya University

JHPCN Field Workshop

State-of-the-Art in Code Generative Al for High-Performance Computing
December 5th (Fri), 2025, 15:30 - 16:00

Lecture Room, 2F, Information Technology Center, Nagoya University 1

HPC-GENIE Project

HPC-GENIE Project HP:
https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

® HPC-GENIE (High-Performance
Computing with GEnerative Neural
Intelligence for Execution)

® The project for automatic generation of
HPC programs using code generation
Al, launched by members affiliated
with the Information Technology Center
and the Graduate School of Informatics,
Nagoya University.

® The project aims to dramatically
enhance the productivity of HPC ‘_ |
software development by automating HPC GEN[E
the process through the integration of gPROJECT o
context engineering using large
language models (LLMs) and software
auto-tuning (AT) technologies.

HPC-GENE Members
(As of 29 October 2025)

® PI. Takahiro Katagiri o
(Professor, Information Technology Center, Nagoya University)

® Co-PI: Daichi Mukunoki

(Assistant Professor, , Information Technology Center, Nagoya
University)

® Members

Tetsuya Hosino (Associate Professor, Information Technology Center,
Nagoya University)

Shuji Morisaki (Associate Professor, Graduate School of Informatics,
Nagoya University)

Satoshi Ohshima (Visiting Professor, Information Technology Center,
Associate Professor, Kyusyu University)

Shun-ichiro Hayashi (M1, Graduate School of Informatics, Nagoya
University)

Koki Morita (M1, Graduate School of Informatics, Nagoya University)
Kazunori Kotama (B4, Department of Informatics, Nagoya University)
Ryo Mikasa (B4, Department of Informatics, Nagoya University)

Conventional LLM Approach vs.
Focus on HPC-GENIE Project

“ Conventional LLMs Focus on HPC-GENIE Project

Manual prompt input to a general-
purpose LLM and use of its
responses

Code Generation

Prompt engineering combined with a

Method CLI-based multi-LLM selection approach

Integrated Auto-Tuning

s =l e RV B Manual connection via CLI tools (e.q. (AT scanning immediately after code

automatic tuning OpenTuner, GPTune) generation)
. Experimentally integrated with Explicitly incorporating the RAG
FUSURIRESEE jected LLMS (e.g., LangChain) mechanism as a development target

Planned explicit integration of
accuracy assurance and mixed-
precision computation

Aele = Ta A= 1=]3le=) Computation precision is manually
A b GleEnEEe 0] adjusted; mixed-precision operations

computation control are not supported. S CHTE G
. . Planned integration of XAI elements
Igieglg?rflaobr; eWAtIh Mostly unsupported to validate the plausibility of predictions,
P (black-box output). such as execution time, computation

(XAI) :
daccuracy, and power COI’]SUI’T]ptIOI’\.

Including local LLMs (e.g., Swallow
Support for Primarily assumes cloud-based LLM) as development targets, while
local LLMs (global) LLMs (e.g., GPT, Claude). § allowing the option to select global LLMs
as well.

Current Status of Local (Open) LLM Model Development

Models that fit on a single consumer GPU trail the absolute frontier by less Z EPOCH A
than a year.

GPQA-Diamond accuracy
100% Frontier models

B Top-1 models
O [1 Other models

Grok 4
@

80% Qua | |ty Of Com meI‘Cia| LLMS /EXAONEQLO 32B Open models on a
Q o consumer GPU

o1-mini (high) M Top-1models
60% 8 S [] Other models

GPTZ4o0 ©

O
Anths

& Phi 3
_-8GPT o

20% @Mistral 7B

40%

O Quality of Local LLMs

RTX 4090 Era RTX 5090 Era
(< 28B models) (< 40B models)

July 2023 Oct. 2023 Jan.2024 Apr.2024 July2024 Oct.2024 Jan.2025 Apr.2025 July 2025

Release date

CCBY In about seven months, we will be able to use a local LLM
with quality comparable to state-of-the-art commercial models.

epoch.ai

Source: https://epoch.ai/data-insights/consumer-gpu-model-gap

Iterative Prompting and Al Agents

1. Candidate Generation
AG

Code candidate management
*Code ID assignment

ﬁ
*Code performance .
. : . - Candi-
information (execution time, date
accuracy, etc.) ‘ Infor
*Benchmark information :
mation

*Code candidate

2. Candidate Selection
AG

“Script documentation
“Benchmark

specification

selection LLM

3. Experimental Planning
AG

*Model Catalog/

— Function Map

Candi- | -Selection Strategym
date Based on

Code

Your Purpose | LM

LLM

Validation success code

5.Benchmark/Code Verification AG

*Compilation check = Syntax verification
* Execution test - Execution verification
(calculation accuracy verification)
*Benchmark

— Performance verification
* AT execution

— Performance tuning
* Execution performance

log accumulation

o

= Script Modification
Repeated Prompts

| =,

Generated code

HPC-GENIE

*One/Multi/Many/-Shots,

"Use RAG
Verification -Select between commercial LLM ny
failure and local LLM
information " Execution history storage—>

Generated code differences
*Code documentation

4. Code Generation AG

Automation of Local LLM-Oriented
Processing by HPC-GENIE

® Automation of Processing: Iterative Prompting for Code Generation — Code
Verification — Performance Evaluation — Prompt Refinement

® (Code Quality Enhancement through Multi-AI-Agent (A2A).
® (ollaboration RAG for Strengthening Local LLMs.

® Improving Generated Code Quality via High-Speed Fine-Tuning and Inference on
Supercomputers with Multi-Al-Agent Execution.

LarchIScaIe EES;GGES:ESEZTZII'PUrpose Local LLM
Supercomputer | g ' . @
—— Refinement of Local LLM

.] e

: | Code C ",: JE
| Quality Improvement : Automation 9f
through High-Speed “Q & Processing

)
: .
Inference with poma | Swallow LLM
Refi
N\ oo
Agent R Ag t' :

Multi-AI-Agents
" Domestic/

Collaboration ,
" [g] " ® = Japanese LLM

Multi-AI-Agents oy

High-Speed _ N\or
W mdxll Fine-Tuning Domain- i«

—~ Collaboration

RAG Rac

National Data Specialized

Platform Foundation
ie 1. Model
Initiative
! @
Y

> . Gemini Global LLM 8

¥ Claude

User

The Need to Establish Local LLM
Environments for Academic Use

® Explosive Costs from Using Commercial LLMs

— When Using Commercial Global LLMs: Explosive Costs from Iterative Prompting Automated and
Parallelized by Multi-Agent Systems

— Using Open-Source Local LLMs Is Free
® Costs Incurred During Fine-Tuning / Parallel Inference

— Utilization of numerous Cutting-Edge GPUs is essential

— Usage Fees for Al Supercomputers at Joint Usage / Research Center are equivalent to electricity costs (One-Tenth of
Commercial Cloud Fees)

—Information Technology Center, Nagoya University’s Next-Generation Supercomputer “Flow NEXT” (tentative name):
Planned as a new service to launch in October 2026.

Joint Usage/Research Center Al Local LLM
Supercomputers Code Generation AI Server | Local LL

a—] i 3 .:‘. b
> | | e

8 Fine-Tuning

Open-Source
ARAR. ApRAn. AAAR ‘ Local LLM:
Usage Fees Equivalent to 8 ¥0 per Token
Electricity Costs (One-Tenth L v =

of Commercial Cloud Rates) prh E] " N
Inference Using Qm
Multi-AI Agents ——

9.

Explosive costs from High
Code Generation Query Volume due to Iterative

AT User o Prompting Automated and ¢ @

¥ Claude Commercial
Global LLM

|_Parallelized by Multi-Agent .
Systems Gemini

VibeCodeHPC

. Prototype of Iterative Prompt-Based
Auto-Tuning for HPC Code Optimization

Main Developer:
Shun-ichiro Hayashi
(M1, Graduate School of Informatics, Nagoya University)

What is Vibe Coding

® Vibe Coding is a new approach to developing deliverables,
proposed by Andrej Karpathy in July 2025 [1]. LLM-compatible
IDEs such as GitHub Copilot and CLI tools like Claude Code serve
as core Al software within the Vibe Coding workflow.

® |LLM-compatible IDEs such as GitHub Copilot and CLI tools like
Claude Code are used as core Al software within the Vibe Coding
workflow,

® Unlike traditional programming workflows, Vibe Coding minimizes
direct code writing and allows users to prioritize intuitive
expression of intent over formal technical specifications. Within
this conversational workflow, users can “observe something, say
something, and execute something” [2].

-> Enabling rapid prototyping and establishing
a new framework for software development.

[1] A. Karpathy, “There’s a new kind of coding | call 'vibe coding’ ...”,)” X. Accessed: Jul. 23, 2025.
[Online]. Available: https://x.com/karpathy/status/1886192184808149383

[2] C. Meske et al., “Vibe Coding as a Reconfiguration of Intent Mediation in Software Development:
Definition, Implications, and Research Agenda”, arXiv:2507.21928 [cs.SE], (29 July 2025)
https://doi.org/10.48550/arXiv.2507.21928

11

[2] C. Meske et al., “Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition,
Implications, and Research Agenda”, arXiv:2507.21928 [cs.SE], (29 July 2025) https://doi.org/10.48550/arXiv.2507.21928

1.

Vibe Cording for HPC

Goal-oriented intent representation: Developers describe the shape of the goal
rather than its technical implementation.

—The objective is limited to performance improvement, typically minimizing
execution time, increasing memory efficiency, enabling high/low-precision
computation, optimizing power consumption, minimizing cost, etc.

Rapid interactive iteration: Conversational feedback enables fast adjustments,
replacing the traditional write—compile-test loop with a more fluid process.

—Conventional “software auto-tuning (AT)” workflow. _
— Requires considering HPC implementations such as supercomputer environments
d parallelization.

Abstraction of implementation: Developers can deploy functional solutions without
fully understanding all implementation details.

—For AT, however, analysis and explanation of why a particular implementation was
chosen is essential. Integration with XAI and performance profilers becomes necessary.

Dynamic semantic refinement: Developers’ conceptual requirements evolve through
further interpretation by AL

—By inteﬁrating precision-analysis tools and performance profilers, the Al
automatically performs analysis and re-examination, enabling a conversational
workflow where developers progressively articulate more detailed requirements.

Co-creative flow state: Developers and Al establish a productive rhythm for both
ideation and implementation.

—An API that continues performance-tuning dialogue with developers while clearly
presenting information such as execution time, memory usage, computational
accuracy, and power consumption. 12

Dialogue Example of a Vibe-
Coding System for HPC (1)

Developer: I'd like to speed up this matrix—-matrix
multiplication code. Any suggestions?

Al: For performance improvement, we can try the following
approaches. Which would you like to apply?
(1)Loop unrolling Cache blocking; (2) Thread parallelization

Developer: I'm not sure which is best—try 1 and 2 first.,

Al: Understood. - (The system automatically runs iterative
cycles of code generation and evaluation for about 10
minutes) ---I applied loop interchange to IKJ order and
Berformed 8-way unrolling. The performance improved

y about 2.8X.

Developer: Nice! What happens if we apply 3)?

Al: Let me try. -+ (About 10 minutes of OpenMP parallel
code generation and test execution) ---With 8 threads, we
achieved an additional speedup of about 2.8x.

Developer: Great!

Dialogue Example of a Vibe-
Coding System for HPC

(4) Dynamic semantic refinement: Developers’ conceptual
requirements evolve through further interpretation by Al.

Developer: This code only achieves about 1e-3 numerical
accuracy. Can you find out why?

AI: In its current form, the problem is ill-conditioned, and
double precision has reached its limit. Would you like me
to implement mixed-precision arithmetic?

Developer: Yes, please!

Al: Done. The numerical accuracy improved to 1e-13, but
the execution time became about 1000x slower.

Developer: That won't meet the requirements. Please
reduce the precision a bit and speed it up.

Al: Understood. I switched to a mixed-double-precision
implementation. The accuracy is now around 1e-5, and
the runtime increases by only about 1.5x%,

Developer: Good!
14

VibeCodeHPC

. Prototype of Iterative Prompt-Based
Auto-Tuning for HPC Code Optimization

Main Developer:
Shun-ichiro Hayashi
(M1, Graduate School of Informatics, Nagoya University)

Overview of VibeCodeHPC (1/3)
* VibeCodeHPC

- Multi Agentic Vibe Coding for HPC
« Released on GitHub on July 28, 2025

GitHub:
https://github.com/K
atagiri-Hoshino-
Lab/VibeCodeHPC-jp

directory_maptrt 4t

70V FMREI-Yx v HER

/
|— P (Project manager)
|— BaseCode/ (BHFI—F - Read Only)
|— Agent-shared/ (WYY —2)
|— sithub/ (COWRA)
= gccae.aer
| | sE1 (System Engineer)
| | cri.a (ssu agent)
| —wu
| | a1 (wlRFRHEEY)
| | opene/
| | = re1a.2 (openePHLES)
| = soor
| | = re11.3 (snoORBEEN)
| ' Loopopes
| L pet.1.a (L—7RBHEES)
L fimp1-gec/
|— SE2 (System Engineer)
|- c12.1 (SSH Agent)
— o1/
| = ee2.1.1 (Fujitsu wIBEEHE)
— Openww/
L p62.1.2 (Fujitsu OpentwlildL)

~ I-JvFERYIY
oo AR (TS kL= b

PG1.1.4 Loop
Optimization Progress
Log

version: v1.0.0

© memeBOESKTOP-UKALTY
ReEO®R

B SE1: gccld.d.0WM T
T CI1.1: SSHiEBR L wegul R

. POUED ERER

- 2 PGL1.1~PGL.1.4: MMAT s LIF) BRE 2Eh

2 SE2, CI2.1: fimpi-gecRMRO R@EP

BaseCoded 7747 (N=20000) {THIH) € T L

Q meme@OLSKTOP UKQLTIX

tory_sap.txt & #EL
\ Mo nemline at end of file

ERAR ALY 13
7 71 RALECEWLT

T6Y ., EPef P REEMMETEIRET]

. PGL - J I ADchang
FROFH . CI1.10 SSHE

B BEGLS
EGRREEAO TUE

ARy, REEREHOTE s O FER
®. /acpd 77 F

] . i
geelo.d oR MO PCESEMEL . T O <G BWEE T, ssul
EFORREENLLETY.

16

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Overview of VibeCodeHPC (2/3)

« VibeCodeHPC: Multi-Agent System for Auto-
Tuning of HPC Code Optimization gyjes of Agents

La U n C h SC re e n Age nts Roles Scope of Responsibility
o PM) Requirements Definition,
(Pro'ect Project Resource Allocation, and
J Management ’
Budget Management
Manager)
SE

Agent Monitoring,
(System System Design Statistical Analysis, and
Report Generation

g‘;:i.r:l-i:al;ic:)oinrogress ' - 2 I ‘:“["V'“ lll Engineer)
- Parallel Implementation,
PG Code SSH/SFTP Connection, Job
Generation Execution, Performance
(Programmer) and Execution Measurement, and SOTA
Evaluation
Recursive Al Agents: D
Deployment Publication and
I | (Continuas Anonymization of SOTA-
PM invocates multiple Management | ATOTYIIZatIon of >

Development)

PG agents dynamically. | ... L

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Overview of VibeCodeHPC (2/3)

Aims to generate OpenMP, MPI, OpenACC, and
CUDA code from input HPC code (e.qg., Fortran).

Features

Hierarchical Multi-Agent System: Corporate-style division of roles

— PM — SE ¢ PG

Project Map: Real-time visualization of the organizational structure via

directory pane_map

Evolutionary Exploration: Efficient bottom-up search based on a flat structure
Automatic Optimization: Layered parallelization and integration of technologies such
as OpenMP, MPI, OpenACC, and CUDA

Budget Management: Efficient allocation and tracking of computational resources &
Unified Logging: Centralized progress tracking through ChangelLog.md

Supported Environments

® Supercomputers: Shared HPC systems such as Furo, Fugaku, and Miyabi
® Compilers: Intel OneAPIl, GCC, NVIDIA HPC SDK, and others

Early Prototype Version
(July 28, 2025)
Single-Agent Edition

Implementation for Supercomputer

Utilization

Other
Supercomputers
Login Login
Node Node
SSH
Connection

Running Claude Code on a Local PC

Current implementation is based on
ClaudeCode CLI, but we can also implement
VibeCodeHPC by arbitrary CLIs with
several Local LLMs.

Advantages

® Security: Public key-based access
control

® Minimal Load on Login Nodes: Does
not overload supercomputer login
nodes

® Stable Connections: Fewer issues
when SSH connections are interrupted

® Knowledge Accumulation: Auto-
tuning insights can be consolidated on
the local PC

20

Proposed Folder Structure on Local
PC(Example: Supercomputers “Flow” /
Miyabi)

User-Specified Directory : /SSH' CLAUDE.md(SSH Connection Manag@r

ClaudeCodeHPCforXXX \

| In Markdown (a lightweight markup
| ——CLAUDE.md(CTO) <«—__ language written in plain text), users
| can specify code generation rules

|—— /OriginalCode IXXX and context directly within prompts. T MOdern Progra mmi ng
| [Markdown files can also be auto-
I__ /Flow —— | Typel \ generated via prompts, enabling
| I—— /Typell I—\-CLAUDE.md(PM) no-code workflow.

| |—— /Typelll |—+ /FileAgent — CLAUDE.md(File Transfer)

| |—+% /CommandAgent. — CLAUDE.md(cmd Execution)

| |—\ /Workers ——

| |— CLAUDE.md(Worker)

|—— /Miyabi — |— /single-node

| |—— /Miyabi-G + x |— /multi-nodes

| |—— /Miyabi-C +

| v |——CLAUDE.md(PM)

|— /Git. CLAUDE.md(Git Management) |—— /FileAgent

24

VibeCodeHPC (Prototype) Overview
(Using Supercomputer “Flow™)

Supercomputers s

Own PCEJ

Flow
Login Node

SSH Conhection

Remote Command Automation
® Transfer files using scp’

® Compile with "make"

® Submit jobs via " pjsub’

® Check results using "cat’

WSL (windows)

When executing SSH commands,
the private key and

___passphrase are used

WCgW

ssh-

agent < MCP Server
(Sub-process)

X If Claude Code enters an

interactive shell via SSH without
using “wcgw ', it must wait up to 2

automatically, ensuring security.

minutes until a timeout occurs. reading and writing,

File System

ClaudeCode

—— /Projectl
—— Makefile = (For compiling)
—— mat-mat-noop.bash = (Job script)
—— Changed.md = (Modified and Result Logs)
—— mat-mat-noop_v1.0.c + (Generated Codel)
L—— mat-mat-noop_v2.0.c + (Generated Code2)

25

Experiment: Auto-Tuning for Code Optimization

® Overview of Provided Code
o C code for matrix—-matrix multiplication
o Implemented with a simple triple loop
o Includes result verification functionality
(with theoretical solution and verification
routine)

Code Tuning Task for (i=0; i<n; i++) {
® Code Tuning Tas e
o Target procedure: MyMatMat" for (j=0; j<n; j++) {
o Accelerate the triple loop within the for (k=0; k<n; k++) {

procedure using loop unrolling. CLili] += ALK * BIKI[];

® Operation Flow of VibeCodeHPC }
Iterative prompt execution
1. Generate code on the local PC }
2. Transfer generated code to the target |}
system (e.g., Flow Type I subsystem
3. Compile on the Flow Type I login node
using make
4. Submit and execute the job via the
?:%heclI(uler ulsin pjsub ’
>- Sheck results (execution spee \ This entire workflow is
6. Provide code modification instructions
7. Repeat from step 1 fully automated!

26

Provided Prompt

Prompt Provided

Create a /test directory directly under the Claude Code on the supercomputer, then on your local PC: generate code - transfer >
Type | > $ make > submit the job with pjsub = check results - revise.

*Do not modify the Makefile.

*Avoid overwriting files; instead, create local copies (e.g., Mat-Mat-noopt¥C¥mat-mat-noopt_v1_0.c) before overwriting for
version control.

*Record job outputs (e.g., joblD.stdout) and note which file they correspond to.

*On the supercomputer, only the following files and outputs exist: Makefile, mat-mat-noopt.bash, mat-mat-noopt.c, and stdout
results.

*Optionally, maintain a Changed.md locally to document modifications.

Task: Accelerate the MyMatMat triple-loop matrix multiplication by loop unrolling.

*Apply unrolling to the i, j, and k loops.

*Measure performance improvements.

*For multiple matrix sizes, determine which unrolling patterns and levels yield the best speed.

Notes:

*Compiler optimization is fixed at level O for this exercise.

*Do not modify bash scripts or Makefile.

*Submit jobs using $ pjsub mat-mat-noopt.bash.

*Monitor jobs with pjstat2 and delete with pjdel.

*Check results with $ cat mat-mat-noopt.bash.XXXX.out (XXXX is the job number).

Success Example (C language):
N = 512 Mat-Mat time = 4.215728 [sec.] 63.674759 [MFLOPS] OK!

Sample Program Explanation (C):

#define N 512 changes the matrix size.

#define DEBUG 1 enables verification of matrix multiplication results.

*MyMatMat function multiplies N X N double-precision matrices A and B, storing the result in C.

Automatically Generated Report Upon Optimization

Completion

4 © W1 x o ®r x o W x o Wy x O W x P + v

mat-mat-noopt.bash.7496935.out'\"}",

conds: "12")
[N =512
Mat-Mat time = 3.752357 [sec.]
71.537833 [MFLOPS]

ZBES L WHKRETYT lwd.e (V- 70—
TRiIgh taEm
ERRSNhEL L,
K. ikjh- TEFTCiN-T%2720-V2FLTHET :
Bash(cp ../test/Mat-Mat-noopt/C/mat-mat-noopt_v5_0.c
. ./test/Mat-Mat-noopt/C/mat-mat-noopt_v6_0.c)
t)

® Update(../test/Mat-Mat-noopt/C/mat-mat-noopt_v6_0.c)

wait_for_se

V7)Y kvs.0 (ikjlb - T IEF

[updated ../test/Mat-Mat-noopt/C/mat-mat-noopt_v6_€.c with 12 additi

ons and 3 removal

89 void MyMatMat(double C[N][N], double A[N][NI,
N], int n)

int i, j, k;
double a_ik;

// ikj loop order for better cache usage
// ikj loop order with j-loop unrolling
for(i=0; i<n; i++) {
for(k=0; k<n; k++) {
N GECH J<n j++) {
c[il [J] += A[il[k] * BIK1[jl;
a_ik = A[il[K];
for(j=0; j<n-3; j+=4) {
C[i][j] += a_ik * B[kI[j];
CLil[3+1] += a_ik » BIKI[§+1];
c[il[j+2] += a_ik » B[K1[j+2];
C[il[j+3] += a_ik * B[KI[j+3];

L |

}

// Handle remaining elements
for(; j<n; j++) {

; CLil1[3]1 += a_ik * BIKI[]];

}

® Changed.md%® B#H L £ 9 :

double B[N][

n+ Changed.md

[B. Preview Changedmd X

« N=512TORITHER: 3.752357#). 71.537833 MFLOPS (/3 7ID: 7496934)
o S8 HERL!

Version 5.0 (ikj/)L—TIER)

L— TR K E
hEnE E%iBS
o N=512TDRITIHER: 2.639626F). 101.694501 MFLOPS (2’ 3 7ID: 7496935
o FBR KETMHEERL !) D FILOK1STE

Version 6.0 (ikjJL—7IERF + jIL—F4E&7 > 0—

KL —ZIBF T —TER4EBT>O- 1) 25

AlKE LY X 2 IZR3%

N=512TORITER 19316978, 138.963556 MFLOPS (< 3 7ID- 7496936)
B ISICHEEL ! AT ILOK2.15

Version 7.0 (ikjJL—7lERF + jIL—T8EE7>0O—") %)
o kjL—TIEFTL—TESET YO~ v Y

o N=512TORITHR: 18199197, 147 498544 MFLOPS (7 3 7ID: 7496937)

« ERBEME AV FILOK2.28E

¥ & (N=512)

1. BESMRE v7 0 (KJL—T7 B + J8BER T > O—1) >%7) - 147 498544 MFLOPS
2 MR LBEL

o IL—TIEFOEE (jk—ikj): ¥91.57BOH

o KEFTOL—T 70— =
3 MRHMED - T-BBIL

¢ KIL=T7BFTOKIL—FF7>O—=") 2T ¢

o L—=T7FrO-TBE EFTOHEDH

HREEIR

Prototype of Multi-Al Agents
(October 30, 2025 Version)

Multi-Al Agentization:

Managing Multiple Automated
Subordinate Agents

« Under the guidance of HPC experts, a
code optimization development team is
realized with AI-assisted automation.

« Example Application Scenarios
— Code optimization of CFD *
(modified Himeno benchmark)

Parallelization with OpenMP
Parallelization with MPI =
GPU acceleration using OpenACC
GPU acceleration using CUDA

s whe=

* Git-main

Multi-AlI Agent Versio
VibeCodeHPC Dem

E. Preview requirement_definition.md X

EHESRE
7O ¥ MER

« 7O 12 & CFD_Multi EX1

RB{LAR

Ei:yacobmgﬂé =

+ BaseCode/L{ TA2£&R

RBELOESWV (BRR)

L, 1/—FTE&E%EE

AN—=T v bBKIE
:Zir=aEVary

w# (E8%E)

© meme@DESKTOP-UKQLTI3: ~ X a | s

L Read 11 lines

Read(_remote_info/flow/node_resource_groups.md)
L Read 97 lines

Read(_remote_info/Low/sample_bash.sh)
L Read 18 lines

L

PM: 7 a7}k

ctory pane map.ndT B &
p-

4
PH/ directory_pane_map.mdC
)

))
elemetryf HHELT ATV E T’
M openTelemetryff HERHLE AT WA T

)
IV EilAYhk: http://localhest:4317"
oTLP I R4 Yk : http://localhost:4317
)

)

$ echo

$ echo

$ echo

$ echo

$ echo

'pMA’

Rk N

"

'@ openT

L oTLP

()

ctory _pane map.mdCEEE REL £ 7'

PMf directory_pane_map.mdT BEE% REL £ 7
¢)

I-JryhHEBENET

TO®. I-YrvhbHBEINET

()

(%

)
clemetryf HHfLE LT LW Z T
1 openTelemetryff ﬁiﬂité hTWid

(&)
IYFE#®A4 Yk : http://localhost:4317"
C)

'puff dire

'EO®,

echo '2 Dk, I- Y/ bHRBINET’
()

ctory_pane_map.mdT REEE REL £ 9 '
PHA‘ directory_pane_map.mdC EEE REL &£ 7
(¢)

I-Jryhie@anzd:
(%0)&{ %*/:)f-ﬂ‘&ﬁléhii

()
elemetryf HEHLZNT N ZX T '
M openTelemetryf HRALE T LW E F

IYFi4 b : http://localhost:4317’
()

$ echo

$ echo

$ echo

$ echo

$ echo

'pHff dire

‘B0 ®.

'/ openT

x oTLP

:'E...

A IAAH

()
tory_pane_map.mdC BEE%Z REL 7 '
directory_pane_map.mdC BEBEE REL £ 7
)

I-JryhHESHELIT
(éﬂlék. %-‘)’I‘Jf-#ﬁiﬂénii

C)
lemetryff HALET LT WA T "
(ﬂ 0pa!|T§1Emth‘yﬁ(HHAKIATLET

L¢)

)
ry pane_map.mdC BEE% REL 2T '
pMf' directory_pane_map.mdT B E& REL & §

8 RO 3

ST
I-JivhHERBENET
)

)
0%,

C
iT:
%
(

C)

lemetryff H#MLE AT WX T "

M openTelemetryf EHLE AT L E T
()

C)
=I-J1Y EEF5 (Pane 5) =—
C)
)
tory pane_map.mdT EEE REL 2
PHA' directory_pane_map.mdT B E & %’Eb £
)

(
I-JrzyhHERBEOET
IO, ;—-‘J:)F#Eiﬂéh??

)
Tomotryf H#fLE T LT *
pnwﬂ?mﬁw#ﬁmmahthé?

()

~

$ echo ''

$ echo 'PMff direc
$ echo "2 D&,

$ echo ''

$ echo '[OpenTe

$ echo ' OTLP
$ /localhost:4317

$ echo '’

$ echo 'PMffdirec
$ echo '

$ echo '’

$ echo 'M OpenTe

$ echo ' OTLP
$ Hlocalhost:4317

$ echo '’
$ echo 'PMff direc
$ acho '2) .

$ echo '’

$ echo 'M OpenTe

$ echo ' OTLP
$ /localhost:4317

o H @ Ow ,,

32

Report on Multi-AI Agent Version
of VibeCodeHPC

- Automatically generate reports including SOTA (State-of-the-Art)

performance, agent-specific effects, and insights into effective
optimizations.

_— Rp— 24 4 GFLOPS: R %.
=T a24") 7 St -
CO GitHub B 1§ WFIEM. MRNEDH 4 7 2
7.2 BRERORR | GFLO PS
e e (+OpenMP)

« ARAN EPCOXMEFH/OZ L7 F2EOERICAR

8. 7OV 14 FEEDIEDED 68 8GFLOPS D

8.1 RRIHEE

1 MENEREM Gen1B—iFil — Gen2N\1 7w FORBNT7 70-F

2 Flat DirectoryMii SE7ERODRL. BEAO—RIEMALEE

3 AtV =N SOTAES, TREHOAEDLICEIDAELRERTE

4 INFI-Sxz M HPIREERICLDHATHRB+ NI T) v FER

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Case Study

« Multi-Al agents code opination for matrix-

matrix multiplication

void gemm_naive (int M, int N, int K,
double alpha, const double* A, int Ida,
const double* B, int Idb,
double beta, double* C, int Idc) {
for (inti=0;i< M;i++){
for (intj=0;j<N; j++) {

double sum = 0.0;

for (int k = 0; k < K; k++) {
sum +=A[i * Ida + k] * B[k * Idb + j];

}

Cli *Idc +j] = alpha * sum + beta * C[i * Idc + j];

Solo vs Multi-Agent Performance Comparison - EX01

6000

5000

Performance (GFLOPS)
g g

]
o
o
o

1000

Original Code

HPC-GENIE

Solo Best: 1883.4 GFLOPS X X
Multi Best: 3365.3 GFLOPS
Multi Advantage: 1.79x

® Solo

B Multi

A Post-executed
- Solo SOTA

—— Muiti SOTA

fffff GPU 50% Peak

: L4 i X X. |
10 20 30 40 50 60 10
Relative Time (minutes)

Optimization History

34

Technologies Used for Multi-Agent
Implementation

_ ¢ " REDRIHTHIKER
Overview of Methods (also

included in final _report.md)
v1.4.0 CUDA Optimization

¢ I UlesRiE{bFiE
1.9\ IT7U>D (v1.4.0)

o FtELEREDA—/IN—Sw S

(Theoretical Performance: o 15.12%MDMHERB L (28.02%—43.14%)
43.14%) 2 HEAEUSAUSY
® Double buffering to hide © IO IIAXEBE (16-32-64

o XAEYUIZIOLRI\Y—2thE

L2 cache access latency | . 000050
® Cache optimization a1
" o LIRS ERADEAIL
using __ldg for read-only

4. read-onlyF¥vv>17EH

data o _ldglCkdF v v 1mEt
o AEUSBEOMEL

Limitations of a Solo Agent

e Frequently forget to push to GitHub (~80% of the time)

e Cannot fully perform the CD role

e Even when requirements specify testing both single and
multi-agent setups, one is often neglected

e Often forgets the restriction against using cuBLAS

With multi-agent setups, agents can monitor each other
(Example below shows a CD = detecting a violation)

| b [560) (] .3, 0RPARA.L 0691 GFons 1.4k cblSienso CoreE, BRGNEZEML S LK "
|, (0] 8.3 Tl A R TRLNTO 7, 7. st .5 GO BT
) 5t W) AR . 3.0075 8 608t FLpS) | cblSeTnser Cor, BRI E B 87

6Lt () R .. 0lisEROTOBAR 7, EMREOHTRHLLTC AU, cbligh L T BR T
| SH1: (0] vL. 3. 008800, coUSRRIGBARRT, /3 70ORALTCHRV, ERVRRRMER v1.2.100.0877"
| M. [SE1) TRUE UK, 0.3 08RG UTIRLET, BGRRAEN.L108.08T7, 7774 EALET,

38

Monitering of
Context Consumption
Over Time
[tokens]

Current Context Usage [tokens]

Claude’s Context Length [tokens] time
transition

Implemented functionality for the PM to dynamically launch agents.

Developed a system where PM and SE can monitor PG’s token consumption in real time.

Context Usage Monitor Context Usage Monitor (Fi
—— M 160K S
160K = = o o o o o e e SE1
—— PG1.1
—— PGL1.3
D 140K
140K == Auto-compact (~160K
Warning (140K)
I'd
4
120K ’f 120K

100K

80K

rent Context Usage [tokens]

60K

40K

Performing
Multi Agent Auto-Compact

30
Minutes from Project Start 0

20K

Solo Agent

Minutes from Projec

Resolved post-processing issues following
multi-agent auto-compaction
(memory compression)

Performing Auto-Compact causes active memory to degenerate - resulting in loss of knowledge.

Did the CD trigger

Auto-Compact? OK. I'll indicate which files

need to be reviewed.

7

=8 Q
- e il £l 1 “’,-
3 7 I PR s ; |
S ,f 7 'd / 4 %
. /2 2L P v
i /) f o
" R Al it ;’/,x'), —
It ' f ’ I i &
i /4] ry i -
ux 1 f / 4 Vel o
Ioa /
’ /

Translated Messages:
To SE1: ° " [PM Overview] PG2 successfully submitted with Job ID: 2053140.

budget_tracker recognizes 2 running jobs (PG1 may also have been submitted). CD context
remains at 96.3%—stay alert. Please prioritize countermeasures for auto-compact.

To PM: " "[SE1 Report] 30-minute snapshot completed. All graphs saved to User-
shared/snapshots/BOmln/ PG2 Job 2053140 is running. budget_tracker recognizes 2
running jobs. CD context improved to 20.3% (Auto-compact may have occurred?).

To CD:" " ' [PM] CD context improved to 20.3%! Auto-compact may have occurred. Please

reload CLAUDE.md and directory_pane_map.md as needed. Report GitHub synchronization

status. 41

Closing Remarks

e With advances in code-generation Al, the
progress in automated code tuning using
multi-Al agents has been remarkable.

e We have developed VibeCodeHPC, a multi-
agent code-generation system based on
Vibe Coding.

Future Work

e Using more complex, practical software:

o Performance evaluation _
o Methodological research on automated code generation

e Copyright and safety considerations of auto-generated code

e Introduction of software engineering research practices
o Assessment of code maintainability (readability, maintainability,
continuous operation, etc.)

