
HPC-GENIE Project HP:
https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

HPC-GENIE: A Multi-
Agent Code Generation
Platform Project Based
on Context Engineering

Takahiro Katagiri
Nagoya University

JHPCN Field Workshop
State-of-the-Art in Code Generative AI for High-Performance Computing
December 5th (Fri), 2025, 15:30 - 16:00
Lecture Room, 2F, Information Technology Center, Nagoya University 1

HPC-GENIE Project

 HPC-GENIE (High-Performance
Computing with GEnerative Neural
Intelligence for Execution)

 The project for automatic generation of
HPC programs using code generation
AI, launched by members affiliated
with the Information Technology Center
and the Graduate School of Informatics,
Nagoya University.

 The project aims to dramatically
enhance the productivity of HPC
software development by automating
the process through the integration of
context engineering using large
language models (LLMs) and software
auto-tuning (AT) technologies.

2

HPC-GENIE Project HP:
https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

HPC-GENE Members
(As of 29 October 2025)

 PI: Takahiro Katagiri
（Professor, Information Technology Center, Nagoya University）

 Co-PI: Daichi Mukunoki
（Assistant Professor, , Information Technology Center, Nagoya
University）

 Members
 Tetsuya Hosino（Associate Professor, Information Technology Center,

Nagoya University）
 Shuji Morisaki (Associate Professor, Graduate School of Informatics,

Nagoya University)
 Satoshi Ohshima (Visiting Professor, Information Technology Center,

Associate Professor, Kyusyu University）
 Shun-ichiro Hayashi (M1, Graduate School of Informatics, Nagoya

University)
 Koki Morita (M1, Graduate School of Informatics, Nagoya University)
 Kazunori Kotama (B4, Department of Informatics, Nagoya University)
 Ryo Mikasa (B4, Department of Informatics, Nagoya University)

3

Conventional LLM Approach vs.
Focus on HPC-GENIE Project

5

Focus on HPC-GENIE ProjectConventional LLMsItem

Prompt engineering combined with a
CLI-based multi-LLM selection approach

Manual prompt input to a general-
purpose LLM and use of its

responses
Code Generation

Method

Integrated Auto-Tuning
(AT scanning immediately after code

generation)
Manual connection via CLI tools (e.g.,

OpenTuner, GPTune)
Integration with
automatic tuning

Explicitly incorporating the RAG
mechanism as a development target

Experimentally integrated with
selected LLMs (e.g., LangChain)Function of RAG

Planned explicit integration of
accuracy assurance and mixed-

precision computation
as core components.

Computation precision is manually
adjusted; mixed-precision operations

are not supported.

Accuracy assurance
/ mixed-precision

computation control

Planned integration of XAI elements
to validate the plausibility of predictions,

such as execution time, computation
accuracy, and power consumption.

Mostly unsupported
(black-box output).

Integration with
Explainable AI

(XAI)

Including local LLMs (e.g., Swallow
LLM) as development targets, while

allowing the option to select global LLMs
as well.

Primarily assumes cloud-based
(global) LLMs (e.g., GPT, Claude).

Support for
local LLMs

Current Status of Local (Open) LLM Model Development

Source: https://epoch.ai/data-insights/consumer-gpu-model-gap

In about seven months, we will be able to use a local LLM
with quality comparable to state-of-the-art commercial models.

6

Quality of Commercial LLMs

Quality of Local LLMs

Code candidate management
・Code ID assignment
・Code performance

information (execution time,
accuracy, etc.)

・Benchmark information

Iterative Prompting and AI Agents

HPC-GENIE
7

4. Code Generation AG5.Benchmark/Code Verification AG

3. Experimental Planning
AG

1. Candidate Generation
AG

2. Candidate Selection
AG

Generated code

Verification
failure

information

Validation success code

Candi-
date
Infor-
mation

・Script Modification
・Repeated Prompts

Generate
code that
does XXX

Instruction
script

・Compilation check → Syntax verificaƟon
・Execution test → ExecuƟon verificaƟon
(calculation accuracy verification)
・Benchmark
→ Performance verificaƟon

・AT execution
→ Performance tuning

・Execution performance
log accumulation

・One/Multi/Many/-Shots,
CoT Execution
・Use RAG
・Select between commercial LLM
and local LLM
・Execution history storage→
Generated code differences
・Code documentation

・Model Catalog/
Function Map

・Selection Strategy
Based on
Your Purpose

・Script documentation
・Benchmark

specification
・Code candidate

selection

Instruction
script

Instruction
script

Generate
code that
does XXX

Candi-
date
Code

Instruction
script

LLM
LLM LLM

LLM

LLM

Automation of Local LLM-Oriented
Processing by HPC-GENIE

 Automation of Processing: Iterative Prompting for Code Generation → Code
Verification → Performance Evaluation → Prompt Refinement

 Code Quality Enhancement through Multi-AI-Agent (A2A).
 Collaboration RAG for Strengthening Local LLMs.
 Improving Generated Code Quality via High-Speed Fine-Tuning and Inference on

Supercomputers with Multi-AI-Agent Execution.

88

Large-Scale
AI

Supercomputer

Domain-
Specialized
Foundation

Model

RAG

Swallow LLM

 Refinement of Local LLM

Collaboration
RAG

Domestic/
Japanese LLM

Automation of
Processing

Global LLM

National Data
Platform
Initiative

Local LLM

User

HPC-GENIE General-Purpose
Code Generation AI

High-Speed
Fine-Tuning

Code
Generati

on

Code
Verifica

tion

Peform
ance

Evaluat
ion

Prompt
Refinem

ent

Multi-AI-Agents

Quality Improvement
through High-Speed

Inference with
Multi-AI-Agents

Collaboration

The Need to Establish Local LLM
Environments for Academic Use

 Explosive Costs from Using Commercial LLMs
– When Using Commercial Global LLMs: Explosive Costs from Iterative Prompting Automated and

Parallelized by Multi-Agent Systems
– Using Open-Source Local LLMs Is Free

 Costs Incurred During Fine-Tuning / Parallel Inference
– Utilization of numerous Cutting-Edge GPUs is essential
– Usage Fees for AI Supercomputers at Joint Usage / Research Center are equivalent to electricity costs (One-Tenth of

Commercial Cloud Fees)
→Information Technology Center, Nagoya University’s Next-Generation Supercomputer “Flow NEXT” (tentative name):
Planned as a new service to launch in October 2026.

9

Joint Usage/Research Center AI
Supercomputers

RAG

Local LLM

Code Generation
AI User

Local LLM
Code Generation AI Server

9

Commercial
Global LLM

Explosive costs from High
Query Volume due to Iterative
Prompting Automated and
Parallelized by Multi-Agent
Systems

Open-Source
Local LLM:
¥0 per Token

Fine-Tuning

Inference Using
Multi-AI Agents

Cutting-Edge
GPU Usage Fees Equivalent to

Electricity Costs (One-Tenth
of Commercial Cloud Rates)

10

VibeCodeHPC
：Prototype of Iterative Prompt-Based
Auto-Tuning for HPC Code Optimization

Main Developer:
Shun-ichiro Hayashi
(M1, Graduate School of Informatics, Nagoya University)

What is Vibe Coding
 Vibe Coding is a new approach to developing deliverables,

proposed by Andrej Karpathy in July 2025 [1]. LLM-compatible
IDEs such as GitHub Copilot and CLI tools like Claude Code serve
as core AI software within the Vibe Coding workflow.

 LLM-compatible IDEs such as GitHub Copilot and CLI tools like
Claude Code are used as core AI software within the Vibe Coding
workflow.

 Unlike traditional programming workflows, Vibe Coding minimizes
direct code writing and allows users to prioritize intuitive
expression of intent over formal technical specifications. Within
this conversational workflow, users can “observe something, say
something, and execute something” [2].
-> Enabling rapid prototyping and establishing

a new framework for software development.

11

[1] A. Karpathy, “There’s a new kind of coding I call ’vibe coding’ …”,” X. Accessed: Jul. 23, 2025.
[Online]. Available: https://x.com/karpathy/status/1886192184808149383

[2] C. Meske et al., “Vibe Coding as a Reconfiguration of Intent Mediation in Software Development:
Definition, Implications, and Research Agenda”, arXiv:2507.21928 [cs.SE], (29 July 2025)
https://doi.org/10.48550/arXiv.2507.21928

Vibe Cording for HPC
1. Goal-oriented intent representation: Developers describe the shape of the goal

rather than its technical implementation.
→The objective is limited to performance improvement, typically minimizing

execution time, increasing memory efficiency, enabling high/low-precision
computation, optimizing power consumption, minimizing cost, etc.

2. Rapid interactive iteration: Conversational feedback enables fast adjustments,
replacing the traditional write–compile–test loop with a more fluid process.
→Conventional “software auto-tuning (AT)” workflow.
→ Requires considering HPC implementations such as supercomputer environments
and parallelization.

3. Abstraction of implementation: Developers can deploy functional solutions without
fully understanding all implementation details.

→For AT, however, analysis and explanation of why a particular implementation was
chosen is essential. Integration with XAI and performance profilers becomes necessary.

4. Dynamic semantic refinement: Developers’ conceptual requirements evolve through
further interpretation by AI.

→By integrating precision-analysis tools and performance profilers, the AI
automatically performs analysis and re-examination, enabling a conversational
workflow where developers progressively articulate more detailed requirements.

5. Co-creative flow state: Developers and AI establish a productive rhythm for both
ideation and implementation.

→An API that continues performance-tuning dialogue with developers while clearly
presenting information such as execution time, memory usage, computational
accuracy, and power consumption. 12

[2] C. Meske et al., “Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition,
Implications, and Research Agenda”, arXiv:2507.21928 [cs.SE], (29 July 2025) https://doi.org/10.48550/arXiv.2507.21928

Dialogue Example of a Vibe-
Coding System for HPC (1)

• Developer: I'd like to speed up this matrix–matrix
multiplication code. Any suggestions?

• AI: For performance improvement, we can try the following
approaches. Which would you like to apply?
(1)Loop unrolling Cache blocking; (2) Thread parallelization

• Developer: I'm not sure which is best—try 1 and 2 first.
• AI: Understood. … (The system automatically runs iterative

cycles of code generation and evaluation for about 10
minutes) …I applied loop interchange to IKJ order and
performed 8-way unrolling. The performance improved
by about 2.8×.

• Developer: Nice! What happens if we apply 3)?
• AI: Let me try. … (About 10 minutes of OpenMP parallel

code generation and test execution) …With 8 threads, we
achieved an additional speedup of about 2.8×.

• Developer: Great!

13

Dialogue Example of a Vibe-
Coding System for HPC

(4) Dynamic semantic refinement: Developers’ conceptual
requirements evolve through further interpretation by AI.

• Developer: This code only achieves about 1e-3 numerical
accuracy. Can you find out why?

• AI: In its current form, the problem is ill-conditioned, and
double precision has reached its limit. Would you like me
to implement mixed-precision arithmetic?

• Developer: Yes, please!
• AI: Done. The numerical accuracy improved to 1e-13, but

the execution time became about 1000× slower.
• Developer: That won’t meet the requirements. Please

reduce the precision a bit and speed it up.
• AI: Understood. I switched to a mixed-double-precision

implementation. The accuracy is now around 1e-5, and
the runtime increases by only about 1.5×.

• Developer: Good!
14

15

VibeCodeHPC
：Prototype of Iterative Prompt-Based
Auto-Tuning for HPC Code Optimization

Main Developer:
Shun-ichiro Hayashi
(M1, Graduate School of Informatics, Nagoya University)

Overview of VibeCodeHPC (1/3)
• VibeCodeHPC

- Multi Agentic Vibe Coding for HPC
• Released on GitHub on July 28, 2025

16

GitHub：
https://github.com/K
atagiri-Hoshino-
Lab/VibeCodeHPC-jp

Overview of VibeCodeHPC (2/3)
• VibeCodeHPC: Multi-Agent System for Auto-

Tuning of HPC Code Optimization

HPC-GENIE 17

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Launch screen
Roles of Agents

Scope of ResponsibilityRolesAgents

Requirements Definition,
Resource Allocation, and

Budget Management

Project
Management

PM
(Project

Manager)

Agent Monitoring,
Statistical Analysis, and

Report Generation
System Design

SE
(System

Engineer)
Parallel Implementation,

SSH/SFTP Connection, Job
Execution, Performance
Measurement, and SOTA

Evaluation

Code
Generation

and Execution

PG
(Programmer)

Publication and
Anonymization of SOTA-

Achieving Code

Deployment
Management

CD
(Continuas

Development)

Recursive AI Agents:
PM invocates multiple
PG agents dynamically.

Aims to generate OpenMP, MPI, OpenACC, and
CUDA code from input HPC code (e.g., Fortran).

18

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Overview of VibeCodeHPC (2/3)

Features
 Hierarchical Multi-Agent System: Corporate-style division of roles

— PM → SE PG
 Project Map: Real-time visualization of the organizational structure via

directory_pane_map
 Evolutionary Exploration: Efficient bottom-up search based on a flat structure
 Automatic Optimization: Layered parallelization and integration of technologies such

as OpenMP, MPI, OpenACC, and CUDA
 Budget Management: Efficient allocation and tracking of computational resources
 Unified Logging: Centralized progress tracking through ChangeLog.md

Supported Environments
 Supercomputers: Shared HPC systems such as Furo, Fugaku, and Miyabi
 Compilers: Intel OneAPI, GCC, NVIDIA HPC SDK, and others

Early Prototype Version
(July 28, 2025)
Single-Agent Edition

19

Implementation for Supercomputer
Utilization

Running Claude Code on a Local PC

Flow

Login
Node

Other
Supercomputers

Login
Node

SSH
Connection

20

Advantages
 Security: Public key-based access

control
 Minimal Load on Login Nodes: Does

not overload supercomputer login
nodes

 Stable Connections: Fewer issues
when SSH connections are interrupted

 Knowledge Accumulation: Auto-
tuning insights can be consolidated on
the local PC

Current implementation is based on
ClaudeCode CLI, but we can also implement

VibeCodeHPC by arbitrary CLIs with
several Local LLMs.

Proposed Folder Structure on Local
PC(Example: Supercomputers “Flow” /
Miyabi)

CTO
Agent

24

User-Specified Directory： /SSH CLAUDE.md(SSH Connection Manager)

ClaudeCodeHPCforXXX
|
|――CLAUDE.md(CTO)
|
|―― /OriginalCode /XXX
|
|―― /Flow ――
| |―― /TypeI ――
| |―― /TypeII |――CLAUDE.md(PM)
| ❘―― /TypeIII |―― /FileAgent ― CLAUDE.md(File Transfer)
| |―― /CommandAgent ― CLAUDE.md(cmd Execution)
| ❘―― /Workers ――
| |― CLAUDE.md(Worker)
|―― /Miyabi ― |― /single-node
| |―― /Miyabi-G ― ❘― /multi-nodes
| ❘―― /Miyabi-C ―
| |――CLAUDE.md(PM)
|―― /Git CLAUDE.md(Git Management) |―― /FileAgent

In Markdown (a lightweight markup
language written in plain text), users
can specify code generation rules
and context directly within prompts. ＝Modern Programming

Markdown files can also be auto-
generated via prompts, enabling
a no-code workflow.

wcgw
MCP Server
（Sub-process）

※If Claude Code enters an
interactive shell via SSH without
using `wcgw`, it must wait up to 2
minutes until a timeout occurs.

Flow
Login Node

SSH Connection

Remote Command Automation
 Transfer files using `scp`
 Compile with `make`
 Submit jobs via `pjsub`
 Check results using `cat`

ssh-
agent

When executing SSH commands,
the private key and
passphrase are used
automatically, ensuring security.

Own PC

Supercomputers

WSL (windows)

ClaudeCode
└── /Project1

├── Makefile （For compiling）
├── mat-mat-noop.bash （Job script）
├── Changed.md （Modified and Result Logs）
├── mat-mat-noop_v1.0.c （Generated Code1）
└── mat-mat-noop_v2.0.c （Generated Code2）

Linux Command Execution
• File reading and writing,

etc.File System

Claude4

25

VibeCodeHPC (Prototype) Overview
(Using Supercomputer “Flow”)

Experiment: Auto-Tuning for Code Optimization

●Overview of Provided Code
○ C code for matrix–matrix multiplication
○ Implemented with a simple triple loop
○ Includes result verification functionality

(with theoretical solution and verification
routine)

●Code Tuning Task
○ Target procedure: `MyMatMat`
○ Accelerate the triple loop within the

procedure using loop unrolling.

●Operation Flow of VibeCodeHPC
Iterative prompt execution
1. Generate code on the local PC
2. Transfer generated code to the target

system (e.g., Flow Type I subsystem)
3. Compile on the Flow Type I login node

using `make`
4. Submit and execute the job via the

scheduler using `pjsub`
5. Check results (execution speed

verification)
6. Provide code modification instructions
7. Repeat from step 1

26

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

This entire workflow is
fully automated!

Prompt Provided
Create a /test directory directly under the Claude Code on the supercomputer, then on your local PC: generate code → transfer →
Type I → $ make → submit the job with pjsub → check results → revise.
•Do not modify the Makefile.
•Avoid overwriting files; instead, create local copies (e.g., Mat-Mat-noopt¥C¥mat-mat-noopt_v1_0.c) before overwriting for
version control.
•Record job outputs (e.g., jobID.stdout) and note which file they correspond to.
•On the supercomputer, only the following files and outputs exist: Makefile, mat-mat-noopt.bash, mat-mat-noopt.c, and stdout
results.
•Optionally, maintain a Changed.md locally to document modifications.

Task: Accelerate the MyMatMat triple-loop matrix multiplication by loop unrolling.
•Apply unrolling to the i, j, and k loops.
•Measure performance improvements.
•For multiple matrix sizes, determine which unrolling patterns and levels yield the best speed.

Notes:
•Compiler optimization is fixed at level 0 for this exercise.
•Do not modify bash scripts or Makefile.
•Submit jobs using $ pjsub mat-mat-noopt.bash.
•Monitor jobs with pjstat2 and delete with pjdel.
•Check results with $ cat mat-mat-noopt.bash.XXXX.out (XXXX is the job number).

Success Example (C language):
N = 512 Mat-Mat time = 4.215728 [sec.] 63.674759 [MFLOPS] OK!

Sample Program Explanation (C):
•#define N 512 changes the matrix size.
•#define DEBUG 1 enables verification of matrix multiplication results.
•MyMatMat function multiplies N × N double-precision matrices A and B, storing the result in C.

Provided Prompt

27

28

Automatically Generated Report Upon Optimization
Completion

29

Prototype of Multi-AI Agents
(October 30, 2025 Version)

Multi-AI Agentization:
Managing Multiple Automated

Subordinate Agents
• Under the guidance of HPC experts, a

code optimization development team is
realized with AI-assisted automation.

• Example Application Scenarios
– Code optimization of CFD

(modified Himeno benchmark)
1. Parallelization with OpenMP
2. Parallelization with MPI
3. GPU acceleration using OpenACC
4. GPU acceleration using CUDA

31

Multi-AI Agent Version:
VibeCodeHPC Demo

32

Report on Multi-AI Agent Version
of VibeCodeHPC

33

• Automatically generate reports including SOTA (State-of-the-Art)
performance, agent-specific effects, and insights into effective
optimizations.

Case Study
• Multi-AI agents code opination for matrix-

matrix multiplication

HPC-GENIE 34

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Original Code Optimization History

void gemm_naive (int M, int N, int K,
double alpha, const double* A, int lda,
const double* B, int ldb,
double beta, double* C, int ldc) {

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

double sum = 0.0;
for (int k = 0; k < K; k++) {

sum += A[i * lda + k] * B[k * ldb + j];
}
C[i * ldc + j] = alpha * sum + beta * C[i * ldc + j];

}
}

}

Technologies Used for Multi-Agent
Implementation

37

Overview of Methods (also
included in final_report.md)
v1.4.0 CUDA Optimization
(Theoretical Performance:
43.14%)
 Double buffering to hide

L2 cache access latency
 Cache optimization

using __ldg for read-only
data

Limitations of a Solo Agent
 Frequently forget to push to GitHub (~80% of the time)
 Cannot fully perform the CD role
 Even when requirements specify testing both single and

multi-agent setups, one is often neglected
 Often forgets the restriction against using cuBLAS

With multi-agent setups, agents can monitor each other
(Example below shows a CD detecting a violation)

38

Monitering of
Context Consumption

Over Time
[tokens]

39

Solo Agent

Claude’s Context Length [tokens] time
transition

Multi Agent

40

Implemented functionality for the PM to dynamically launch agents.

Developed a system where PM and SE can monitor PG’s token consumption in real time.

Performing
Auto-Compact

Resolved post-processing issues following
multi-agent auto-compaction
(memory compression)

Translated Messages:
To SE1:```[PM Overview] PG2 successfully submitted with Job ID: 2053140.
budget_tracker recognizes 2 running jobs (PG1 may also have been submitted). CD context
remains at 96.3%—stay alert. Please prioritize countermeasures for auto-compact.```

To PM:```[SE1 Report] 30-minute snapshot completed. All graphs saved to User-
shared/snapshots/30min/. PG2 Job 2053140 is running. budget_tracker recognizes 2
running jobs. CD context improved to 20.3% (Auto-compact may have occurred?).```

To CD:```[PM] CD context improved to 20.3%! Auto-compact may have occurred. Please
reload CLAUDE.md and directory_pane_map.md as needed. Report GitHub synchronization
status.```

Did the CD trigger
Auto-Compact?

SE
PM

CD

OK. I’ll indicate which files
need to be reviewed.

41

Performing Auto-Compact causes acƟve memory to degenerate → resulƟng in loss of knowledge.

Closing Remarks
 With advances in code-generation AI, the

progress in automated code tuning using
multi-AI agents has been remarkable.

 We have developed VibeCodeHPC, a multi-
agent code-generation system based on
Vibe Coding.

42

Future Work
 Using more complex, practical software:

○ Performance evaluation
○ Methodological research on automated code generation

 Copyright and safety considerations of auto-generated code

 Introduction of software engineering research practices
○ Assessment of code maintainability (readability, maintainability,

continuous operation, etc.)

