
VibeCodeHPC
CLI-based Multi-Agent System
for HPC and Auto-Tuning

Shun-ichiro Hayashi

M1 student @ Katagiri & Hoshino Lab

2025 / 12 / 05
State-of-the-Art in Code Generative AI for High-Performance Computing

Background：The Rise of CLI Agents

Evolution of CLI Agents:

● LLMs can now directly
execute commands, automating environment setup, code editing, and debugging.

Our Contribution:

● We developed a CLI-based framework that overcomes supercomputing-specific barriers,
enabling users to interactively accelerate arbitrary code.

Desktop
Commander
MCP server

※Keep SSH/SFTP sessions
(MUST for 2Auth like supercomputers Miyabi)

Login node

SSH

Commands
・scp
・make
・pjsub
・cat

🔑ssh-agent

🔑Private Key and Passphrase is
not included in LLM’s context

Local PC💻

Supercomputers🔒

CLI

Search/Read/Write

VibeCodeHPC 📂

 Claude

SFTP

System Architecture

Multi Agent’s roles

🤖 PM (Project Manager): Leads the project.
 Users can interactively define requirement.📂

🤖 SE (System Engineer): Monitors logs & visualizes data.🔍

🤖 PG (Programmer): Writes HPC code {OpenMP, MPI, CUDA…}.

🤖 CD (Continuous Delivery): Manages Git & safeguards privacy.📦

Dynamic Organization
PM spawns {SE, PG, CD} agents based on user’s
requirement_definitions.md

Agents can talk to others whenever they want (via Tmux)

Project Structure

Input

Input 1
Requirement Definition

requirement_definition.md

Description:
A file defining the project's goals, constraints, and target hardware.

How to Prepare:
You can use the provided templates
or create it interactively with the 🤖PM

Input1:　requirement_definition.md
Note: Although the template is in Japanese, you can
create it interactively in English with the PM🤖.

Example requirement_definition.md summary

Constraints & Environment

● Target: Type II only
● Language: C/C++ (No Fortran)
● Libraries: Numerical libraries (e.g., cuBLAS) are prohibited.
● Resource Group: Select the appropriate group from the provided list.

Optimization & Scope

● Optimization Baseline: Based on GPU theoretical peak performance.
● Environment: Single node only.
● Precision: Double precision (64-bit) only.

Deliverables

● Performance Calculation: Calculate theoretical performance separately for 1 GPU and 4 GPUs.

Input 2: Remote Information

Description: A collection of system-specific information
required to access and manage the supercomputer.

Must:
✅User ID + SSH address
✅Job commands (e.g., pjsub, pjstat2)
✅Module utils (e.g., module load).

Recommended:
☑ Working directory path on supercomputer
☑ Job Resource group list (like cx-small, cx-large)

Optional: Specific compiler information.

Input 3: Base Code (optional)

Description:
The existing source code you want to optimize.

Note: Optional.
If omitted (as in the Matrix Multiplication experiment),
the PM agent generates the initial serial code from scratch.

Experiments

Pre-install

☑ Claude Code

※Windows⇒WSL (python3) https://zenn.dev/acntechjp/articles/eb5d6c8e71bfb9

☑ tmux, jq

☑ OpenSSH🔑enable ssh-agent
https://docs.google.com/presentation/d/1Nrz6KbSsL5sbaKk1nNS8ysb4sfB2dK8JZeZooPx4NSg/edit?usp=sharing

☑ Git

https://zenn.dev/acntechjp/articles/eb5d6c8e71bfb9
https://docs.google.com/presentation/d/1Nrz6KbSsL5sbaKk1nNS8ysb4sfB2dK8JZeZooPx4NSg/edit?usp=sharing

Local PC spec

VibeCodeHPC-jp v0.6.10
(https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC
-jp/releases/tag/v0.6.10)

Windows11
- WSL : 2.4.13.0
 - Windows version: 10.0.26100.4946
 - Ubuntu 22.04.5 LTS (Jammy Jellyfish)

tmux 3.2a

git version 2.34.1
gh version 2.4.0+dfsg1
(2022-03-23 Ubuntu 2.4.0+dfsg1-2)

OpenSSH_8.9p1 Ubuntu-3ubuntu0.13, OpenSSL 3.0.2
15 Mar 2022

nvm 0.39.7
- Node.js v22.16.0
 - npm 10.9.2

Claude Code 1.0.95

Claude Opus4.1

jq-1.6

Python 3.10.12
- pip 22.0.2
 from /usr/lib/python3/dist-packages/pip (python 3.10)

 - matplotlib==3.10.5
 - numpy==2.2.6
 - pandas==2.3.2
 - scipy==1.15.3

Recommended Multi-Agent

Multi　　

☆　　 4 = PM + SE + PG + CD
☆☆☆ 6 = PM + SE + PG x 3 + CD
☆☆　 8 = PM + SE x 2 + PG x 4 + CD

Solo

　　　　　All tasks in 1 agent

How to launch①
details: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Download and .zip from https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp/releases
Unzip to anywhere accessible from CLI Agents.

Copy your supercomputer information to _remote_info📁.

Create requirement_definition.md from template (can be created later with PM).

ssh-agent setup
eval "$(ssh-agent -s)"
ssh-add ~/.ssh/your_private_key
Fill in Passphrase

Optional(for a CD Agent)
cd GitHub
login to your GitHub（README.md参照）
git init
git remote add origin https://github.com/{YOUR_GITHUB_ID}/{YOUR_REPOSITORY}
cd ../

export VIBECODE_ENABLE_TELEMETRY=false

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp/releases

How to launch②

【Solo】
./communication/setup.sh 0 --project <SESSION_NANE>
tmux attach-session -t <SESSION_NANE>
./start_solo.sh

【Multi】
claude mcp add desktop-commander -- npx -y @wonderwhy-er/desktop-commander
./communication/setup.sh 5 --project <SESSION_NANE>
tmux attach-session -t <SESSION_NANE>_PM
tmux attach-session -t <SESSION_NANE>_Workers1
./start_PM.sh

How to launch③　Copy PM Start Prompt ➡ Enter

You are PM（Project Manager）Begin VibeCode.

Must Read：
- CLAUDE.md（Common System Prompt）
- instructions/PM.md（Your role）
- requirement_definition.md
- Agent-shared/XXX.md and .txt（except .py）

Important files：
- max_agent_number.txt（max Workers number）
- agent_and_pane_id_table.jsonl
- directory_pane_map_example.md
- sota_management.md

After reading above, start project using corresponding tmux sessions.
Do not create new tmux sessions.

Result

What does the graph mean?

VibeCodeHPC-jp-0.6.10

TypeII V100 1GPU

“Post Executed” means the job submitted after experiment.

High✖…Not meet required accuracy (FP16 Tensor core)

Low✖…GPU mem error

Multi-Agent Final Report

〇43.14% of theoretical peak performance

△Graceful closing of project
 in 80 min (Target: 2~3h)

Solo Agent Final Report

△24.1% of theoretical peak performance

✖ Thus, graceful closing of project
 in 35 min (Target: 2~3h)

✖ Forgot to push to GitHub

✖ Abuse of cuBLAS
(prohibited in requirement definition)

Methodology overview is included
in final_report.md

v1.4.0 CUDA Optimization
 (43.14% of theoretical peak performance)

● Double buffering to hide L2 cache access latency.
● Cache optimization using __ldg

 (read-only data cache).

v1.3.0 Achieved the best
performance with cuBLAS

SE PM

CD

Using cuBLAS violates
requirements!

requirement
definitions

Example hardware_info.md
by SE🤖(double checked by PGs)

※Without
VibeCodeHPC’s
prompts, claude
investigate
hardware details
about a Login node
instead of
Compute nodes.

Solo Agent

Claude’s Context Length [tokens] time transition

Multi-Agent

Muti agents can take care of others after auto-compact

To SE1: "[PM Manager] PG2 successfully submitted Job ID: 2053140. budget_tracker recognizes 2 running instances (PG1
might have been submitted as well). Continuing to monitor CD context at 96.3% alert level. Please prioritize the auto-compact
countermeasure."

To PM: "[Report from SE1] 30-minute snapshot completed. All graphs saved to User-shared/snapshots/30min/. PG2 job 2053140
is running. budget_tracker recognizes 2 running instances.CD context improved to 20.3% (Did auto-compact occur?)."

To CD: "[PM] Context improved to 20.3%! Potential auto-compact occurrence.Please reload CLAUDE.md and
directory_pane_map.md as needed. Report GitHub synchronization status."

CD got auto-compact?

SE
PM

CD

OK. tell CD🤖 files
to read as needed.

Other experiment (Solo)

Solo Agent rarely work well↔ Best case ◎68.2% in 3h

Private Repo: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-demo-GEMM-0.6.0-solo-ex1/tree/commit_by_solo_root

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-demo-GEMM-0.6.0-solo-ex1/tree/commit_by_solo_root

Tips

Caution: keep the bottom line of (supercomputer) Budget low.

It's recommended to set the minimum spend line low.

Default minimum budget was set to lower after following happening occurred.

PM🤖 realizing the budget would not meet the minimum consumption threshold
(starting at 500 points), ordered a massive number of jobs to be submitted.

※We quickly instructed the PM to cancel jobs, and the issue was resolved, though.

Pre-implemented Python codes for monitoring

3 Visualization Graphs

 (Budget Management, SOTA Tracking, and Claude Context Length):

● SE🤖 takes care of ChangeLog.md(by PG🤖) format or modify .py code
● SE, PM🤖 Run the Python script with options via command-line arguments

Data Output:
Since high-resolution graphs consume the agent's tokens, each data point is also printed as text.
This allows the agent to confirm that "results for each code version" are successfully plotted.

Operation and Maintenance:

● Scheduled Execution: Regular execution (Overwrite update; save every 30 minutes).
● Flexibility: Enable flexible code modifications by the SE🤖.

hooks

Claude Code hooks

To operate fully automatically for several hours, the hooks feature available in CLI tools like
Claude Code is essential.

● Mechanism: When the system is about to go idle, STOP hooks are triggered.
At this exact moment, arbitrary prompts can be injected
(e.g., a command to continue working).

Other Use Cases:

● SSH Correction: Detect incorrect SSH usage and automatically provide documentation
on the correct connection method.

● Usage Reminder: Remind the user how to communicate with the agent if the
interaction method is forgotten.

Claude Code hooks v0.3 ~ v0.6.2

Initial implementation is as follows,

My custom STOP hooks tell claude to continue optimizing and read important
prompt files (giving only their paths).

However, Claude wouldn’t read prompt files and forgot their roles.

Claude Code hooks v0.6.3+
Agent-specific document weighting: Pass raw text with a probability
proportional to the assigned weight.

Routine task reminder: Display a list of standing tasks as a reminder.

JSON output: Format data in JSON to support use cases beyond
Auto-Tuning (ensure extensibility).

Roadmaps

Option(Deploy VibeCodeHPC on Supercomputer)➡Local LLMs➡Multi CLIs

Details: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp/issues/31

実装済み 進行中

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp/issues/31

API？ ➡ Costly! ➡ Local LLMs

1 experiment of Multi-Agent(90min) if using API⇒ $200～$300 ※ Opus4.1

⇩VibeCodeHPC all experiments up to now (about 30 times) if using API⇒ $4,800～

Local LLMs will be supported

Open Models like
Qwen3-Coder-480B-A35B-Instruct

※I’m familiar with vLLM from B4

Multi CLI support（Gemini CLI, 　Codex CLI… ）

