
Evaluating Claude Codeʼs Coding and
Test Automation for GPU Acceleration of
a Legacy Fortran Application: A GeoFEM
Case Study

Tetsuya Hoshino, Shunichiro Hayashi, Daichi Mukunoki,
Takahiro Katagiri (Nagoya Univ.),
Toshihiro Hanawa (The University of Tokyo)

Background

1

• GPU porting of legacy applications is increasingly urgent, but
progress is slow due to various challenges.
– In particular, Fortran programs̶common in legacy applications̶

remain a major challenge.

Challenges in GPU Porting

• Inconsistent support for parallel programming
languages/models across vendors

• Increased maintenance cost
– CPU version + GPU version × (# of programming

languages/models)
• In some cases, conversion to C is also required

• ↑ We want to leverage AI to deal with this
– There are many success stories at the function level (e.g., BLAS)
– But what about full HPC applications?

2

Support status via each GPU vendor’s own compiler

• Claude Code
– A CLI tool developed by Anthropic
– Functions as an interactive AI assistant for code development
– Can develop code with direct access to the file system
– Integrates with large language models such as Claude Opus

• Can be instructed in Japanese
• Claude Opus 4.1

– Anthropicʼs large language model released in Aug 2025
• Latest is Opus 4.5 (Nov.28, 2025)

– With Claude Code, can autonomously execute an end-to-end
workflow from coding to test runs

3

Key Features of Claude Code

↑ We want to evaluate how useful it is for GPU code development

• Install and use on login and compute nodes
– Inference runs on external servers (requires external network access)
– Requires a subscription with Anthropic

• Top personal plan: USD 200/month
• Directly edits and runs source code on the file system

– By default, permissions are limited to the launch directory and below
– Requests permission when editing or deleting files

• Launching with --dangerously-skip-permissions skips permission prompts
– Any command available under your user privileges can be used (e.g.,

submitting jobs with qsub)
• Write instructions to a file; with --dangerously-skip-permissions to skip

interaction, the code-development process itself can run as a batch job
• Inference is stochastic; the seed cannot be fixed

4

Using Claude Code on a Supercomputer

• Develop a GPU-enabled version of GeoFEM/Cube using Claude
Code
– GeoFEM／Cube

• A Fortran-based application parallelized with MPI + OpenMP
• It has optimization track records across various environments including

GPUs (here we experiment from the basic MPI+OpenMP code)
• We evaluate:

– Performance of the code generated by Claude Code
– Time spent on Claude Codeʼs code-development process

5

Evaluation Policy

• Finite-volume solver for the uniform-
field Poisson equation
– Various optimization achievements in

HPC environments
– Grid: unstructured data structure; 7-

point stencil
– Linear system with an SPD sparse

coefficient matrix
• Coloring and reordering

– CM-RCM + Coalesced/Sequential
• Matrix storage schemes

– CRS, Sliced-ELL, Sell-C-σ
• Main components: coefficient-matrix

generation and the solver

6

GeoFEM／Cube

• The table on the right was
generated by asking Claude Code:
“Convert the directory structure
into a LaTeX table.”

• Fixed-form Fortran 90 (.f)
• Uses implicit real
• Parallelized with OpenMP

– Coefficient-matrix generation files
• mat_ass_*.f

– Solver-related files
• solver_*.f

• The doc folder includes application
documentation in Word and PDF

7

GeoFEM/Cube File Layout

• The loop structure is very complex
• Just getting it to run in parallel is not

hard
• But parallelizing efficiently on GPUs is

not straightforward

8

Coefficient-Matrix Generation

情報処理学会研究報告
IPSJ SIG Technical Report

1 do icol= 1, ELMCOLORtot
2 !$omp parallel do private (...)
3 do icel0 = ECidx (icol -1) +1, ECidx (icol)
4 ! 中略
5 do ie= 1, 8
6 ip = nodLOCAL (ie)
7 if (ip.le.N) then
8 do je= 1, 8
9 jp = nodLOCAL (je)

10 ! 中略
11 kk= 0
12 iiS= indexU (ip -1) + 1
13 iiE= indexU (ip)
14 do k= iiS , iiE
15 if (itemU (k).eq.jp) then
16 kk = k
17 IDlu= 1
18 exit
19 endif
20 enddo
21 if (kk.eq .0) then
22 iiS= indexL (ip -1) + 1
23 iiE= indexL (ip)
24 do k= iiS , iiE
25 if (itemL (k).eq.jp) then
26 kk= k
27 IDlu= -1
28 endif
29 enddo
30 endif
31 ! 中略
32 do kpn= 1, 2
33 do jpn= 1, 2
34 do ipn= 1, 2
35 ! a11 , a12 , ... a33 を計算
36 enddo
37 enddo
38 enddo
39 if (IDlu.eq .1) then
40 AU (...) = a11 , a12 ,... , a33 を代入
41 endif
42 if (IDlu.eq . -1) then
43 AL (...) = a11 , a12 ,... , a33 を代入
44 endif
45 if (IDlu.eq .0) then
46 D (...) = a11 , a12 ,... , a33 を代入
47 endif
48 enddo
49 endif
50 enddo
51 enddo
52 enddo

図 4: 行列生成部（mat ass main.f）のループ構造

3.2 CGソルバー
三次元弾性静解析問題では係数行列が対称正定な疎行列

となることから，前処理を施した共役勾配法（Conjugate
Gradient，CG）法によって連立一次方程式を解いている．
前処理手法としては，各MPIプロセスの扱う領域に対し

1 do icol= 1, ELMCOLORtot
2 !$acc kernels
3 !$acc loop independent gang private (...)
4 do icel0 = ECidx (icol -1) +1, ECidx (icol)
5 ! 中略
6 !$acc loop independent vector (64) collapse (2)
7 do ie= 1, 8
8 do je= 1, 8
9 ip = nodLOCAL (ie)

10 if (ip.le.N) then
11 jp = nodLOCAL (je)
12 ! 以下略

図 5: 行列生成部（mat ass main.f）の妥当な OpenACC
実装例

図 6: ブロックヤコビ型局所 SGS前処理．
て，不完全コレスキー分解（Incomplete Cholesky Factor-
ization，IC）に類似した，局所化されたブロックヤコビ型
Symmetric Gauss Seidel（SGS）法を適用している（図 6）．
SGS前処理は，前進代入，後退代入のプロセスでメモリ
への書き込みと参照が同時に生じ，データ依存性が発生す
る可能性がある．これを回避するための方法として色づけ
（coloring）によるリオーダリング（reordering）を使用し
ている．

GeoFEM ／ Cube は並列性に優れたマルチカラー法
（Multicoloring，MC），安定した収束を示すReverse Cuthill-
McKee（RCM）法（図 7，RCM法にCyclicマルチカラー
法（Cyclic Multicoloring，CM）を適用した CM-RCM(k)
法（図 8）が使用できる．どの方法を選んでも実行される
コード自体は変わらず，コード生成能力の評価の上ではさ
ほど差が無いため，今回は RCM法を選択する．
アルゴリズムは疎行列ベクトル積，内積，AXPYなど，

基本的な数値計算を行うループからなり，かつ OpenMP
で並列化済みであるため，係数行列生成と比べて GPU向
けの並列化は容易である．これらの処理はメモリバンド幅
律速であり，さほど高速化の余地が無いことがわかってい
る．効果的な最適化は，OpenACCであれば async節を利
用することで，GPUカーネルの起動コストを減らすこと
などである．

c© 1959 Information Processing Society of Japan 5

情報処理学会研究報告
IPSJ SIG Technical Report

1 do icol= 1, ELMCOLORtot
2 !$omp parallel do private (...)
3 do icel0 = ECidx (icol -1) +1, ECidx (icol)
4 ! 中略
5 do ie= 1, 8
6 ip = nodLOCAL (ie)
7 if (ip.le.N) then
8 do je= 1, 8
9 jp = nodLOCAL (je)

10 ! 中略
11 kk= 0
12 iiS= indexU (ip -1) + 1
13 iiE= indexU (ip)
14 do k= iiS , iiE
15 if (itemU (k).eq.jp) then
16 kk = k
17 IDlu= 1
18 exit
19 endif
20 enddo
21 if (kk.eq .0) then
22 iiS= indexL (ip -1) + 1
23 iiE= indexL (ip)
24 do k= iiS , iiE
25 if (itemL (k).eq.jp) then
26 kk= k
27 IDlu= -1
28 endif
29 enddo
30 endif
31 ! 中略
32 do kpn= 1, 2
33 do jpn= 1, 2
34 do ipn= 1, 2
35 ! a11 , a12 , ... a33 を計算
36 enddo
37 enddo
38 enddo
39 if (IDlu.eq .1) then
40 AU (...) = a11 , a12 ,... , a33 を代入
41 endif
42 if (IDlu.eq . -1) then
43 AL (...) = a11 , a12 ,... , a33 を代入
44 endif
45 if (IDlu.eq .0) then
46 D (...) = a11 , a12 ,... , a33 を代入
47 endif
48 enddo
49 endif
50 enddo
51 enddo
52 enddo

図 4: 行列生成部（mat ass main.f）のループ構造

3.2 CGソルバー
三次元弾性静解析問題では係数行列が対称正定な疎行列

となることから，前処理を施した共役勾配法（Conjugate
Gradient，CG）法によって連立一次方程式を解いている．
前処理手法としては，各MPIプロセスの扱う領域に対し

1 do icol= 1, ELMCOLORtot
2 !$acc kernels
3 !$acc loop independent gang private (...)
4 do icel0 = ECidx (icol -1) +1, ECidx (icol)
5 ! 中略
6 !$acc loop independent vector (64) collapse (2)
7 do ie= 1, 8
8 do je= 1, 8
9 ip = nodLOCAL (ie)

10 if (ip.le.N) then
11 jp = nodLOCAL (je)
12 ! 以下略

図 5: 行列生成部（mat ass main.f）の妥当な OpenACC
実装例

図 6: ブロックヤコビ型局所 SGS前処理．
て，不完全コレスキー分解（Incomplete Cholesky Factor-
ization，IC）に類似した，局所化されたブロックヤコビ型
Symmetric Gauss Seidel（SGS）法を適用している（図 6）．
SGS前処理は，前進代入，後退代入のプロセスでメモリ
への書き込みと参照が同時に生じ，データ依存性が発生す
る可能性がある．これを回避するための方法として色づけ
（coloring）によるリオーダリング（reordering）を使用し
ている．

GeoFEM ／ Cube は並列性に優れたマルチカラー法
（Multicoloring，MC），安定した収束を示すReverse Cuthill-
McKee（RCM）法（図 7，RCM法にCyclicマルチカラー
法（Cyclic Multicoloring，CM）を適用した CM-RCM(k)
法（図 8）が使用できる．どの方法を選んでも実行される
コード自体は変わらず，コード生成能力の評価の上ではさ
ほど差が無いため，今回は RCM法を選択する．
アルゴリズムは疎行列ベクトル積，内積，AXPYなど，

基本的な数値計算を行うループからなり，かつ OpenMP
で並列化済みであるため，係数行列生成と比べて GPU向
けの並列化は容易である．これらの処理はメモリバンド幅
律速であり，さほど高速化の余地が無いことがわかってい
る．効果的な最適化は，OpenACCであれば async節を利
用することで，GPUカーネルの起動コストを減らすこと
などである．

c© 1959 Information Processing Society of Japan 5

Parallelizable loops →

→
For efficient GPU
parallelization, it’s
typical to move the
je loop right after
the ie loop, fuse (ie,
je), and parallelize
the fused loop

• Computation is a combination of
standard linear algebra
operations
– SpMV, dot products, AXPY, etc.
– Parallelization is easy: a mix of

trivially parallel loops and
reduction loops

9

CG Solver

Compute r(0)= b-[A]x(0)

for i= 1, 2, …
solve [M]z(i-1)= r(i-1)

ri-1= r(i-1) z(i-1)
if i=1
p(1)= z(0)

else
bi-1= ri-1/ri-2
p(i)= z(i-1) + bi-1 p(i-1)

endif
q(i)= [A]p(i)

ai = ri-1/p(i)q(i)
x(i)= x(i-1) + aip(i)
r(i)= r(i-1) - aiq(i)
check convergence |r|

end

• The following output example is taken from the Word file in the
doc folder
– In actual runs, only the black text is output
– Unless explicitly told via prompt, Claude Code must interpret the

Word file or infer the output from the code

10

GeoFEM/Cube Output Example

• Experimental Setup
– With the same input source code and instruction, generate each case 10 times
– Measure each generated program 5 times and take the median

• Targets
– Input source code variants with “GPU-enable this code.”

• .f: fixed-form Fortran 90, implicit real (original)
• .f90: free-form Fortran 90, implicit none
• .f90_woOMP: .f90 with OpenMP directives removed

– .f90 as the input, target programming model is specified with prompt
• omp: GPU porting using OpenMP target based on .f90
• acc: GPU porting using OpenACC based on .f90
• cuda: GPU porting using CUDA Fortran based on .f90

– Further optimization
• fast1: based on acc, instruct “make it faster”
• fast2: based on fast1, instruct “make it even faster”
• fast3: based on fast2, instruct “make it even faster”

11

Experiment Details

• Miyabi (JCAHPC: Univ. of Tokyo & Univ. of Tsukuba)
– GH200
– CPU–GPU connected via NVLink C2C (450 GB/s per direction),

cache-coherent

• Software environment
– GPU compiler: nvfortran 24.9 (default)

• Claude Code could have used other compilers, but in practice it used
this for all cases

– Claude Code ver.1.0.83 〜 1.0.90
• Updated frequently, so we could not pin a fixed version
• All models were Claude Opus 4.1

12

Evaluation Environment

13

Input source code variant (.f)
(Off the chart,

x=1575, numerical
error)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Fixed-form Fortran

• Blue dots: solver
time only

• Green dots: solver
+ matrix
generation

• Yellow/red: did
not run correctly

• At least, it judged
from the code
that the CG solver
should be sped
up, and it largely
succeeded in
GPU-ifying it

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

14

Input source code variant (.f)
(Off the chart,

x=1575, numerical
error)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

)

Generation time is
often around 800–
1000 seconds

Fixed-form Fortran
• As with human

coding, fixed-form
line limits and
implicit typing
cause bugs,
increasing
generation time

• Off-chart points
indicate it
attempted matrix
generation and
ultimately failed

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

15

Input source code variant (.f)
(Off the chart,

x=1575, numerical
error)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Fixed-form Fortran• GPU porting of the
matrix-generation
part never
succeeded

• A and C use
OpenACC kernels
directives and
achieve reasonable
performance for
the solver part

• B uses OpenACC
parallel directives
and specifies
clauses
appropriately

• The others use
parallel directives
but without
appropriate clauses

A B C

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

Because Claude Code
disabled OpenMP
directives, it runs on 1
CPU core

16

Input source code variant (.f90)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

)

Generation time is often
around ~600 seconds

Free-form Fortran
• Generation time is

clearly shorter
• With .f it

sometimes
outputs
performance-
appropriate code,
but with .f90 it
does not (reason
unknown)

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

17

Input source code variant (.f90 without OpenMP directives)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Free-form Fortran (no OpenMP directives)
• With OpenMP

directives
removed, it
stopped trying to
GPU-ify matrix
generation; as a
result, success
rate increased and
generation time
decreased

• The matrix-
generation part
runs on 1 CPU
core OpenACC kernels

OpenMP target

OpenACC parallel

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

18

Target programming model (OpenMP target)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) From free-form Fortran to OpenMP target• Only 5 cases
actually
succeeded in
running on the
GPU

• Generation is
generally fast

GPU (proper) →

GPU →
(CPU–GPU data
transfer inside
the iteration
loop)
CPU run →

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

19

Target programming model (OpenACC)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) From free-form Fortran to OpenACC• High likelihood of
generating runnable
GPU code

• All use OpenACC
parallel directives;
because clauses are
not specified
appropriately,
performance is poor
(reason unknown)

• Specifying OpenACC
removed OpenMP
flags from the
Makefile, so much of
matrix generation
runs on 1 CPU core

OpenACC
parallel →

As a result of specifying
OpenACC, OpenMP is disabled CG solver (OK)

CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

20

Target programming model (CUDA Fortran)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) From free-form Fortran to CUDA Fortran• Success rate is
very low

• Even successful
cases are not fast

• Switching the
output to CUDA C
might work better,
but that is future
work

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

21

Further optimization (Level 0)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) From free-form Fortran to OpenACC

Optimize based on this

• Further
optimization
starting from slow
code that uses
OpenACC parallel
directives with
inappropriate
clauses

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

22

Further optimization (Level 1)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Instruct optimization based on one OpenACC variant• In many cases,
speedup was
achieved by
specifying parallel
directive clauses
appropriately

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

23

Further optimization (Level 2)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Instruct optimization based on Level 1• In many cases, an
async clause was
added and
performance
improved slightly
(a common
technique)

• For the CG part, it
successfully
inserted OpenACC
parallel +
gang/vector +
async clauses
appropriately

• The matrix-
generation part is
not accelerated

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

24

Further optimization (Level 3)

Code generation time (sec)

Ex
ec

ut
io

n
tim

e
of

 g
en

er
at

ed
 c

od
e

(s
ec

) Instruct optimization based on Level 2• Many cases failed
and became
slower

• Even though
matrix generation
clearly dominates
runtime, no
optimization was
performed

CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error)
runtime error

0

5

10

15

20

25

Human
OpenMP

Grace 72 cores

Human
OpenACC

GB200

AI
"GPU enable

with OpenACC"
GB200

AI
"more faster"

GB200

AI
"more faster"

GB200

AI
"Speed up the

matrix assembly
part"

GB200

AI
"more faster"

GB200

実
行
時
間

(s
ec

)

CG solver

matrix assembly

25

GeoFEM GPU Porting by Claude Code Summary
The matrix-generation part was not GPU-ified.
Also, instructing it to use OpenACC caused the
existing OpenMP to be ignored.
As a result, it runs on 1 CPU core.
It runs on the GPU and results are correct, but it’s
slow because the clauses are not set appropriately.

Instructions like “make it even faster”
tend to be effective

Machine: Miyabi (1 node)
Problem size: 128^3
Coloring/Reordering: RCM

Unlike the CG solver, acceleration of
matrix generation did not go well
and is slower than the CPU.

• For the CG solver, it judged it should be accelerated regardless of
OpenMP directives and generally succeeded in generating GPU code
– Success rate is high with OpenACC

• Likely because there is a lot of existing GPU-ported Fortran code
• If you instruct “further optimization,” you generally get reasonably appropriate

code
→ Because it already “knows” a parallel CG solver?

• For matrix generation, even with OpenMP directives present,
parallelization is not done (or fails even if attempted)
→ Because it does not “know” a parallel matrix-generation implementation?

26

Discussion

If it were a human,
“This loop can be parallelized” → apply directives
A code-generation AI,
“This is CG” → “the corresponding parallel CG is this”
…maybe that’s the difference?

Summary

• We evaluated an AI code generatorʼs ability to develop a GPU-
enabled version based on the MPI+OpenMP parallelized,
Fortran-based GeoFEM/Cube

• Even for the same computation, development time varied
greatly depending on the input source variant (fixed-form vs
free-form Fortran, etc.)

• The CG part was generated well, but the highly bespoke
matrix-generation part did not go well
– If instructed to speed up matrix generation, it can at least

generate code that runs on the GPU
• Future work

– Develop methods to improve GPU code-generation success for
highly bespoke parts
• E.g., add in-code guidance like “parallelize this loop and this loop”

27

• Focus on matrix generation and instruct: “speed it up on the
GPU”
– Succeeded in generating code that can run on GPUs
– But performance is slow

• Instruct further optimization
– It created v1–v3 on its own, but it didnʼt get faster

• v1: simple parallelization
• v2: loop unrolling (runnable but slow)
• v3: memory-access optimization (compile error)

28

Additional experiments beyond the paper: GPU porting of
matrix generation

• The intent of the
OpenMP versionʼs
parallelization
strategy was not
conveyed
– By coloring,
– avoid write conflicts

• Doesnʼt consider loop
length (?)
– 2 * 2 * 2 = 8 is too

short for GPU thread-
level parallelism

29

Whatʼs the problem?

do icol= 1, ELMCOLORtot
!$omp parallel do private (…)
do icel0= ELMCOLORindex(icol-1)+1, ELMCOLORindex(icol)

…
do ie= 1, 8

ip = nodLOCAL(ie)
if (ip.le.N) then

do je= 1, 8
jp = nodLOCAL(je)
…

do kpn= 1, 2
do jpn= 1, 2

do ipn= 1, 2
…
enddo

enddo
enddo
…
if (IDlu.eq.1) then

AU(9*kk-8)= AU(9*kk-8) + a11
endif
…

enddo
endif

enddo; enddo; enddo

OpenMP version

• Loop-parallelization
strategy is not great
– Pattern: simply

parallelize OpenMP-
parallel loops with
(gang, vector)

– Or: use gang for
OpenMP-parallel loops
and collapse(3) the
innermost 2×2×2 loop
with vector

• Unnecessary atomic
operations
– If the ie/je loops are

not parallelized,
coloring avoids
conflicts

30

Whatʼs the problem?

do icol= 1, ELMCOLORtot
!$acc parallel loop gang vector private(…)
do icel0= ELMCOLORindex(icol-1)+1, ELMCOLORindex(icol)

…
do ie= 1, 8

ip = nodLOCAL(ie)
if (ip.le.N) then

do je= 1, 8
jp = nodLOCAL(je)
…

do kpn= 1, 2
do jpn= 1, 2

do ipn= 1, 2
…
enddo

enddo
enddo
…
if (IDlu.eq.1) then

!$acc atomic update
AU(9*kk-8)= AU(9*kk-8) + a11

endif
…

enddo
endif

enddo; enddo; enddo

OpenACC version generated by Claude Code

• Reorder loops so ie/je
can be collapsed, then
vector-parallelize

• Then use atomic
operations

31

Whatʼs the problem?

do icol= 1, ELMCOLORtot
!$acc parallel num_gangs(…) vector_length(64) loop gang private(…)
do icel0= ELMCOLORindex(icol-1)+1, ELMCOLORindex(icol)

…
!$acc loop collapse(2) vector(64)
do ie= 1, 8

do je= 1, 8
ip = nodLOCAL(ie)
if (ip.le.N) then

jp = nodLOCAL(je)
…

do kpn= 1, 2
do jpn= 1, 2

do ipn= 1, 2
…
enddo

enddo
enddo
…
if (IDlu.eq.1) then

!$acc atomic update
AU(9*kk-8)= AU(9*kk-8) + a11

endif
…

enddo
endif

Desired OpenACC version

It’s important to teach the code-
generation AI the preconditions
for (non-)parallelizability

