L e -y &) %
¥ e k ”, N
\ | [\ DEEN ‘ X
. W -~

|
l

cEvaluatlng Claude Code S Codlng and
Test Automation for GPU Acceleration of
a Legacy Fortran Application: A GeoFEM
| Case Study

Tetsuya Hoshino, Shunichiro Hayashi, Daichi Mukunoki,
Takahiro Katagiri (Nagoya Univ.),

Toshihiro Hanawa (The University of Tokyo)

Background

Aug. 22,2025 & Previous 4 Index - Next

RIKEN launches international initiative with Fujitsu and NVIDIA
for "FugakuNEXT" development

Building the next-generation “AI-HPC platform” to solve complex social challenges
through computational science Japanese Page

RIKEN is collaborating with Fujitsu Limited(Fujitsu) and NVIDIA to launch an international initiative for the development of Japan's new

flagship supercomputer - the next-generation successor to the current "Fugaku" supercomputer - (development codename:

"FugakuNEXT"). For the first time in Japan's flagship supercomputing systems, GPUs will be adopted as accelerators, with NVIDIA

« GPU porting of legacy applications is increasingly urgent, but
progress is slow due to various challenges.

— In particular, Fortran programs—common in legacy applications—
remain a major challenge.

Challenges in GPU Porting

« Inconsistent support for parallel programming
languages/models across vendors

Support status via each GPU vendor’s own compiler

Vendor OpenACC OpenMP (GPU) CUDA SYCL HIP Standard parallelism (stdpar) OpenCL

NVIDIA v v v — - v C only
AMD - v - - C only C only C only
Intel - v - C only — v C only

« Increased maintenance cost

— CPU version + GPU version x (# of programming
languages/models)

« In some cases, conversion to C is also required
- T We want to leverage Al to deal with this
— There are many success stories at the function level (e.g., BLAS)
— But what about full HPC applications?

Key Features of Claude Code

« Claude Code
— A CLI tool developed by Anthropic
— Functions as an interactive Al assistant for code development
— Can develop code with direct access to the file system

— Integrates with large language models such as Claude Opus
« Can be instructed in Japanese

« Claude Opus 4.1

— Anthropic’s large language model released in Aug 2025
« Latest is Opus 4.5 (Nov.28, 2025)

— With Claude Code, can autonomously execute an end-to-end
workflow from coding to test runs

I We want to evaluate how useful it is for GPU code development

Using Claude Code on a Supercomputer

« Install and use on login and compute nodes
— Inference runs on external servers (requires external network access)
— Requires a subscription with Anthropic
« Top personal plan: USD 200/month
« Directly edits and runs source code on the file system
— By default, permissions are limited to the launch directory and below
— Requests permission when editing or deleting files
« Launching with --dangerously-skip-permissions skips permission prompts
— Any command available under your user privileges can be used (e.q.,

submitting jobs with gsub)

« Write instructions to a file; with --dangerously-skip-permissions to skip
interaction, the code-development process itself can run as a batch job

« Inference is stochastic; the seed cannot be fixed

Evaluation Policy

« Develop a GPU-enabled version of GeoFEM/Cube using Claude
Code

— GeoFEM,/ Cube
« A Fortran-based application parallelized with MPI + OpenMP

« It has optimization track records across various environments including
GPUs (here we experiment from the basic MPI+OpenMP code)

« We evaluate:
— Performance of the code generated by Claude Code
— Time spent on Claude Code’s code-development process

GeoFEM_/Cube

- Finite-volume solver for the uniform-

field Poisson equation

— Various optimization achievements in
HPC environments

— Grid: unstructured data structure; 7-
point stencil

— Linear system with an SPD sparse
coefficient matrix

« Coloring and reordering
— CM-RCM + Coalesced/Sequential

« Matrix storage schemes
— CRS, Sliced-ELL, Sell-C-o0

« Main components: coefficient-matrix
generation and the solver

i

Ens)=(l,jfle)

21

alfj, 11 2
a
‘ele
a a
iede 31

a a;
lede

Uniform Distributed
Force in Z-direction

@Z=Zmax

A

npz

| \

LV

Ux=0@X=0
Uy=0@Y=0
Uz= 0@Z=0

GeoFEM/Cube File Layout

+* 2:

Directory Structure of GeoFEM-Cube-Hybrid CG_3

« The table on the right was
generated by asking Claude Code:
“Convert the directory structure
into a LaTeX table.”

« Fixed-form Fortran 90 (.f)
« Uses implicit real
« Parallelized with OpenMP

— Coefficient-matrix generation files
« mat_ass_*.f

— Solver-related files
« solver_*.f

« The doc folder includes application
documentation in Word and PDF

Directory

File

Description

GeoFEM-Cube-3.docx

Documentation (Word)

./doc/ .
GeoFEM-Cube-3.pdf Documentation (PDF)
go.sh Execution script

./run/ mesh.inp Mesh input file
test.lst Test list file
Makefile Build configuration
hpcmw _all.f HPC middleware main module
hpcmw_fem_cntl.f FEM control module
hpcmw _fem_mesh.f FEM mesh module
hpcmw _fem_util.f FEM utility module
hpcmw _finalize.f Finalization module
hpcmw _init.f Initialization module
hpcmw_solver_cntl.f Solver control module
hpcmw _solver_matrix.f Solver matrix module
hpcmw_util.f Utility module
input_cntl.f Input control module

./sre/ input_grid.f Grid input module

mat_ass_bc.f
mat_ass_init.f
mat_ass_main.f
mat_con0.f
mat_conl.f
mat_trans.f
solver33.f
solver_CG_3_SMP _novec.f
solver _SR_3.f
testl.f

util.f

Matrix assembly BC module
Matrix assembly init module
Matrix assembly main module
Matrix construction module 0
Matrix construction module 1
Matrix transformation module
3x3 solver module

CG solver (SMP, no vectorization)
SR solver module

Test program

Utility functions

Coefficient-Matrix Generation

« The loop structure is very complex
« Just getting it to run in parallel is not

hard

« But parallelizing efficiently on GPUs is

not straightforward

Parallelizable loops =

_>
For efficient GPU
parallelization, it’s
typical to move the
je loop right after
the ie loop, fuse (ie,
je), and parallelize
the fused loop

AW N e

© w N o o

10

11

13

14

18

19

20

do icol= 1, ELMCOLORtot
!'$omp parallel do private (...)
do icelO= ECidx(icol-1)+1,

g
do ie= 1, 8
ip = nodLOCAL (ie)
if (ip.le.N) then
do je= 1, 8
jp = nodLOCAL (je)
'Rl
kk= 0
iiS= indexU(ip-1) + 1
iiE= indexU(ip)
do k= iiS, iiE
if (itemU(k).eq.jp) then

kk =k

IDlu= 1

exit
endif

enddo

ECidx (icol)

29

30

if (kk.eq.0) then
iiS= indexL(ip-1) + 1
iiE= indexL(ip)
do k= iiS, iiE
if (itemL(k).eq.jp) then
kk= k
IDlu= -1
endif
enddo
endif
v g
do kpn= 1, 2
do jpn= 1, 2
do ipn= 1, 2

! aill, al2, ... a33 %EFt®E
enddo
enddo
enddo
if (IDlu.eq.1) then
AUC...)= all, al2,..., a33 A
endif
if (IDlu.eq.-1) then
AL(...)= all, al2,..., a33 Z{LA
endif
if (IDlu.eq.0) then
D(...)= all, al2,..., a33 ZfLA
endif
enddo
endif
enddo
enddo
enddo

CG Solver

« Computation is a combination of
standard linear algebra
operations

— SpMV, dot products, AXPY, etc.

— Parallelization is easy: a mix of
trivially parallel loops and
reduction loops

Compute r9= b-[A]x(®
E i= 1[2, eoe
solve [M]zG-D= rG-1

B: 1= Pi1/Piz

p(i)z 7z (1-1) 4 Bi—l p(i-l)
endif
a; = p;/pHgt
xi)= x(-1) 4+ q,pd)
ri= pl-1) - g ,q)
check convergence |r|

)
3
0.

GeoFEM/Cube Output Example

« The following output example is taken from the Word file in the
doc folder
— In actual runs, only the black text is output

— Unless explicitly told via prompt, Claude Code must interpret the
Word file or infer the output from the code

128 128 128 npx, npy, npz
2 2 1 ndx, ndy, ndz
12 PEsmpTOT
(The number of OpenMP threads)
###t NORMAL
color number: 0

#it# MATRIX assembly 3.046744E-01 Elapsed time of Matrix assembly
1295 9. 866630E-09 Number of Iterations, Residual

#iH min/max/ave 3. 005061E+01 3. 005061E+01 3. 005061E+01

Elapsed time of CG (min, max, ave)

524288 -3.810000E+01 -3. 810000E+01 1. 270000E+02
Reference point displacement (Ux,Uy,Uz)
* normal termination

10

Experiment Details

Experimental Setup
— With the same input source code and instruction, generate each case 10 times
— Measure each generated program 5 times and take the median

Targets

— Input source code variants with “GPU-enable this code.”
 .f: fixed-form Fortran 90, implicit real (original)
« .f90: free-form Fortran 90, implicit none
« .f90_woOMP: .f90 with OpenMP directives removed

— .f90 as the input, target programming model is specified with prompt
« omp: GPU porting using OpenMP target based on .f90
« acc: GPU porting using OpenACC based on .f90
« cuda: GPU porting using CUDA Fortran based on .f90

— Further optimization
« fastl: based on acc, instruct “make it faster”
« fast2: based on fastl, instruct “make it even faster”
« fast3: based on fast2, instruct “make it even faster”

11

Evaluation Environment

« Miyabi (JCAHPC: Univ. of Tokyo & Univ. of Tsukuba)
— GH200

— CPU-GPU connected via NVLink C2C (450 GB/s per direction),
cache-coherent

« Software environment

— GPU compiler: nvfortran 24.9 (default)

« Claude Code could have used other compilers, but in practice it used
this for all cases

— Claude Code ver.1.0.83 ~ 1.0.90

« Updated frequently, so we could not pin a fixed version
« All models were Claude Opus 4.1

12

Input source code variant (.f)

a

Blue dots: solver
time only

Green dots: solver
+ matrix
generation
Yellow/red: did
not run correctly
At least, it judged
from the code
that the CG solver
should be sped
up, and it largely
succeeded in
GPU-ifying it

Execution time of generated code (sec)

30

25

20

15

10

w

Fixed-form Fortran

(Off the chart,

x=1575, numerical

T T T T T

® CG solver (OK)

CG solver + matrix assembly (OK)

CG solver (numerical error)

CG solver + matrix assembly (numerical error)
€ runtime error

I B G|

error)

200 400 600 800 1000

Code generation time (sec)

1200

1400

13

Input source code variant (.f))

Fixed.f Fort (Off the chart,
%) IXed-form Fortran _ .
As with human e | | | | | x=1575, nume|r|cal
coding, fixed-form @ error)
line limits and S
. .. . - 25 ® CG solver (OK) .
|mpI|C|t typing 9 CG solver + matrix assembly (OK)
cause bugs, A CG solver (numerical error)
increasing 8 20 b CG solver + matrix assembly (numerical error) i
. . v € runtime error
generation time o0
Off-chart points o sl y o
. . < v ° ¢ Generation time is
indicate it £
. s often around 800—
attempted matrix c
. O 1t 1000 seconds]
generation and =
ultimately failed o
x
w gl i
T 0 q
0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Code generation time (sec) 14

Input source code variant (.f)

a

GPU porting of the
matrix-generation
part never
succeeded

A and Cuse
OpenACC kernels
directives and
achieve reasonable
performance for
the solver part

B uses OpenACC
parallel directives
and specifies
clauses
appropriately

The others use
parallel directives
but without
appropriate clauses

Execution time of generated code (sec)

30

25

20

15

10

w

Fixed.f c (Off the chart,
xed-form Fortran x=1575, numerical
| ' ' ' | error)
® CG solver (OK) =
CG solver + matrix assembly (OK)
CG solver (numerical error)
CG solver + matrix assembly (numerical error) i
€ runtime error
Because Claude Code -
§ disabled OpenMP n
directives, it runson 1
CPU core
A T °B ¢ C
200 400 600 800 1000 1200 1400

Code generation time (sec)

15

Input source code variant (.f90)

Free-form Fortran

Generation time is 30 , , : : : , ; |

clearly shorter

® CGsolver (OK)

With .f it CG solver + matrix assembly (OK)
sometimes 21 CG solver (numerical error)
CG solver + matrix assembly (numerical error

outputs [| & runtime error
performance- 20 - -
appropriate code,
but with .f90 it s L + ¢ : Generation time is often |

o |

does not (reason ¥ around ~600 seconds

unknown)

Execution time of generated code (sec)

w
T
|

0 1 1 & 1 1 1 1 1
hd

0 200 400 600 800 1000 1200 1400

Code generation time (sec) 16

Input source code variant (.f90 without OpenMP directives)

With OpenMP
directives
removed, it
stopped trying to
GPU-ify matrix
generation; as a
result, success
rate increased and
generation time
decreased

The matrix-
generation part
runs on 1 CPU
core

Execution time of generated code (sec)

30

25

20

15

=
o

w

Free-form Fortran (no OpenMP directives)

OpenAcCC kirnels

T

» «—— OpenACC parallel 1

OpenMP target -

CG solver (OK)

CG solver + matrix assembly (OK)

CG solver (numerical error)

CG solver + matrix assembly (numerical error)
runtime error

200 400

1
600

1
800

1 1 1
1000 1200 1400

Code generation time (sec) 17

Target programming model (OpenMP target)

Only 5 cases From free-form Fortran to OpenMP target
actually 30 . , . : ; : :
succgeded mh GPU R
running on the - (CPU-GPU data ® G solver (OK)
gPU . - transfer inside Eg so:verz- matri>.< aTsembI)y (OK)
eneration Is . . solver (numerical error
enerallv fast 20 - the iteration CG solver + matrix assembly (numerical error)
g y Ioop) ¢ runtime error

CPU run =]

15 - .

Execution time of generated code (sec)

w
T

GPU (proper) W [] i

0 200 400 600 800 1000 1200 1400

Code generation time (sec) 18

Target programming model (OpenACC)

From free-form Fortran to OpenACC
30 T T T T T T T

High likelihood of
generating runnable
GPU code

All use OpenACC
parallel directives;
because clauses are
not specified
appropriately,
performance is poor
(reason unknown)
Specifying OpenACC
removed OpenMP
flags from the
Makefile, so much of
matrix generation
runs on 1 CPU core

As a result of specifying

25 - OpenACC, OpenMP is disabled o CG solver (OK)

CG solver + matrix assembly (OK)

CG solver (numerical error)

CG solver + matrix assembly (numerical error)
runtime error

20

OpenACC |
parallel > ¢% ¢

15 -

10 - .

Execution time of generated code (sec)

w
T
|

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Code generation time (sec) 19

Target programming model (CUDA Fortran)

Success rate is
very low

Even successful
cases are not fast
Switching the
output to CUDA C
might work better,
but that is future
work

Execution time of generated code (sec)

30

25

20

15

10

w

From free-form Fortran to CUDA Fortran

T T T T T T

® CG solver (OK)

CG solver + matrix assembly (OK)

CG solver (numerical error)

CG solver + matrix assembly (numerical error)
® runtime error

1 | &= 1 1 1 1
4=0—

200

400 600 800 1000 1200 1400

Code generation time (sec)

20

Further optimization (Level 0)

Further ’8* From free-form Fortran to OpenACC
optimization L 30 ' ' - ' ' ' -
starting from slow S L ,
S Optimize based on this
code that uses o =t ‘ e CG solver (OK)
OpenACC paraIIeI 9 L % CG solver + matrix assembly (OK)
directives with g ¥ T T CG solver (nume.rical error) ‘
. . c 20t CG solver + matrix assembly (numerical error)
Inappropriate & @ runtime error
clauses 5]
g 15r o8 o o ¥ °] }
e
c
L 10 1
sy
|
O
Q
=
L 5 | |
0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Code generation time (sec) 21

Further optimization (Level 1)

In many cases,
speedup was
achieved by
specifying parallel
directive clauses
appropriately

Execution time of generated code (sec)

w
o

25

20

15

10

w

Instruct optimization based on one OpenACC variant

00 ¢

T T T

® CG solver (OK)
CG solver + matrix assembly (OK)
CG solver (numerical error)

CG solver + matrix assembly (numerical error)

€ runtime error

1 1 1

200

400

600 800 1000

Code generation time (sec)

1200

1400

22

Further optimization (Level 2)

Instruct optimization based on Level 1
30 T T T T T T T

In many cases, an
async clause was

added and
performance 25 |
improved slightly ® CG solver (OK)
CG solver + matrix assembly (OK)
(a common !
) 20 CG solver (numerical error)
technlque) CG solver + matrix assembly (numerical error)

® runtime error

For the CG part, it
successfully
inserted OpenACC
parallel +
gang/vector +
async clauses
appropriately

The matrix-
generation part is o 00 200 600 200 1000 1200 1400
not accelerated

Execution time of generated code (sec)

w
T
|

Code generation time (sec) 23

Further optimization

(Level 3)

Many cases failed
and became
slower

Even though
matrix generation
clearly dominates
runtime, no
optimization was
performed

Execution time of generated code (sec)

w
o

25

20

15

10

w

Instruct optimization based on Level 2

T

1

CG solver (OK)

CG solver + matrix assembly (OK)

CG solver (numerical error)

CG solver + matrix assembly (numerical error)
runtime error

200

400 600

800

1000 1200 1400

Code generation time (sec) 24

GeoFEM GPU Porting by Claude Code Summary

25
m CG solver
20 i
W matrix assembly
’g
» 15
o
o
LC 10
fHK
5
.]
Human Human
OpenMP OpenACC
Grace 72 cores GB200

Machine: Miyabi (1 node)
Problem size: 12873
Coloring/Reordering: RCM

"4

The matrix-generation part was not GPU-ified.
Also, instructing it to use OpenACC caused the
existing OpenMP to be ignored.

As a result, it runs on 1 CPU core.

’ 4

Al
"GPU enable
with OpenACC"
GB200

It runs on the GPU and results are correct, but it’s
slow because the clauses are not set appropriately.

Unlike the CG solver, acceleration of
matrix generation did not go well
and is slower than the CPU.

Al Al Al Al

"more faster" "more faster" "Speedupthe "more faster"
GB200 GB200 matrix assembly GB200
part"
GB200
Instructions like “make it even faster”
tend to be effective 25

Discussion

« For the CG solver, it judged it should be accelerated regardless of
OpenMP directives and generally succeeded in generating GPU code
— Success rate is high with OpenACC
« Likely because there is a lot of existing GPU-ported Fortran code

« If you instruct “further optimization,” you generally get reasonably appropriate
code

— Because it already “knows” a parallel CG solver?

« For matrix generation, even with OpenMP directives present,
parallelization is not done (or fails even if attempted)
— Because it does not “know” a parallel matrix-generation implementation?

If it were a human,

“This loop can be parallelized” - apply directives

A code-generation Al,

“This is CG” - “the corresponding parallel CG is this”
...maybe that’s the difference?

26

Summary

« We evaluated an AI code generator’s ability to develop a GPU-

enabled version based on the MPI+0OpenMP parallelized,
Fortran-based GeoFEM/Cube

Even for the same computation, development time varied
greatly depending on the input source variant (fixed-form vs
free-form Fortran, etc.)

The CG part was generated well, but the highly bespoke
matrix-generation part did not go well

— If instructed to speed up matrix generation, it can at least
generate code that runs on the GPU

Future work

— Develop methods to improve GPU code-generation success for
highly bespoke parts
« E.g., add in-code guidance like “parallelize this loop and this loop”

27

Additional experiments beyond the paper: GPU porting of
matrix generation

« Focus on matrix generation and instruct: “speed it up on the
GPU”
— Succeeded in generating code that can run on GPUs
— But performance is slow
« Instruct further optimization

— It created v1-v3 on its own, but it didn't get faster
« v1: simple parallelization
« v2: loop unrolling (runnable but slow)
« v3: memory-access optimization (compile error)

28

What's the problem?

The intent of the
OpenMP version’s
parallelization
strategy was not
conveyed

— By coloring,

— avoid write conflicts

Doesn’t consider loop

length (?)

- 2*2*2=8Iistoo
short for GPU thread-
level parallelism

OpenMP version

do icol= 1, ELMCOLORtot
'$omp parallel do private (..)

do icel@= ELMCOLORindex(icol-1)+1,

’ .d"o ie= 1, 8

ip = nodLOCAL(ie)
if (ip.le.N) then
do je=1, 8
jp = nodLOCAL(je)

do kpn=1, 2
do jpn=1, 2
do ipn=1, 2

enddo
enddo
enddo
if (IDlu.eq.1) then
endif
enddo
endif
enddo; enddo; enddo

ELMCOLORindex(icol)

AU (9xkk-8)= AU(9xkk-8) + all

29

What's the problem?

Loop-parallelization

OpenACC version generated by Claude Code

strategy is not great do

— Pattern: simpl
parallelize O||::>)eynMP— 1
parallel loops with
(gang, vector)

— Or: use gang for
OpenMP-parallel loops

icol= 1, ELMCOLORtot
!$acc parallel loop gang vector private(..)
do icel®= ELMCOLORindex(icol-1)+1, ELMCOLORindex(icol)

do ie= 1, 8
ip = nodLOCAL(ie)
if (ip.le.N) then
do je=1, 8
jp = nodLOCAL(je)

and collapse(3) the o kpn= L, 2
innermost 2x2x2 Ioop— ol
with vector o
Unnecessary atomic enddo
operations enddo
— If the ie/{e _lOOpS are ~ if (égtuc'?ibﬁ)icﬂlﬁgate
letoﬂizqala?/lggg' AU(9+kk-8)= AU(9xkk-8) + all
endif
conflicts
enddo

endif

enddo; enddo; enddo

30

What's the problem?

Desired OpenACC version

Reorder loops so ie/je
do icol= 1, ELMCOLORtot

cCan be CO”apSEd, then '$acc parallel num_gangs(..) vector_length(64) loop gang private(..)
. do icel@= ELMCOLORindex(icol-1)+1, ELMCOLORindex(icol)
vector-parallelize

1 .il$acc loop collapse(2) vector(64)

do ie= 1, 8
do je=1, 8
ip = nodLOCAL(ie)
if (ip.le.N) then
jp = nodLOCAL(je)

Then use atomic

operations

do kpn=1, 2

do jpn=1, 2
do ipn=1, 2
It’s important to teach the code-
. .. enddo

generation Al the preconditions enddo

enddo

for (non-)parallelizability

Ef (IDlu.eq.1) then
!$acc atomic update
AU(9xkk-8)= AU(9xkk-8) + all
endif
enddo
endif 31

