
Automatic Generation of Numerical Codes
for GPUs Using LLMs1)

Daichi Mukunoki 1 Shunichiro Hayashi 2 Tetsuya Hoshino 1 Ryo Mikasa 3

Koki Morita 2 Takahiro Katagiri 1

1Information Technology Center, Nagoya University, 2Graduate School of Informatics, Nagoya University,
3School of Informatics, Nagoya University

JHPCN Field Workshop
State-of-the-Art in Code Generative AI for High-Performance Computing

Dec. 5, 2025.

1)This research was supported by the Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
(JHPCN) and the High Performance Computing Infrastructure (HPCI) (Project ID: jh250015). It was also supported by JSPS
KAKENHI Grant Numbers JP23K11126 and JP24K02945.

1 / 30

HPC-GENIE

HPC-GENIEa – High-Performance Computing with
GEnerative Neural Intelligence for Execution

• A project for HPC code generation using LLMs at
the Information Technology Center, Nagoya
University

▶ Project leader: Takahiro Katagiri
▶ Sub-leader: Daichi Mukunoki

Key Missions

• Automatic HPC code optimization

• Fortran to GPU for Fugaku NEXT

• Technologies for local LLMs

• And more ...

ahttps://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

2 / 30

https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

BLAS Code Generation Using o4-mini & GPT-4.12)

Number of Correct Codes (in 10 Generations)

Non-Optimized Code Optimized Code
Level Routine GPT-4.1 o4-mini GPT-4.1 o4-mini
1 dasum 10 10 9 7

daxpy 10 10 10 10
ddot 10 10 8 9
idamax 3 10 2 9
dnrm2 10 10 7 5
drot 10 10 8 9

2 dgemv 8 9 3 6
dger 10 10 7 7
dsymv 8 8 0 2
dsyr2 8 9 2 7
dtrmv 3 4 0 5
dtrsv 8 9 0 4

3 dgemm 10 10 3 0
dsymm 4 8 3 3
dsyrk 3 10 0 1
dsyr2k 3 10 0 0
dtrmm 0 1 0 0
dtrsm 0 0 0 0

• OpenAI GPT-4.1 & o4-mini – entry-level
general-purpose LLMs

• Generation with one simple prompt
(for optimized code): “Implement
#ROUTINE# routine in BLAS in C
language. Thread parallelization, SIMD
vectorization, and cache blocking should
be considered for speedup.”

• Given just a routine name, working code
can often be generated.

2)D. Mukunoki, S. Hayashi, T. Hoshino, T. Katagiri, “Performance Evaluation of General Purpose Large Language Models for
Basic Linear Algebra Subprograms Code Generation”, arXiv preprint arXiv:2507.04697, 2025.

3 / 30

DGEMM

Reference Fortran code (part)
1 IF (NOTB) THEN

2 IF (NOTA) THEN

3 * Form C := alpha*A*B + beta*C.

4 DO 90 J = 1,N（略）
5
6
7 DO 80 L = 1,K

8 TEMP = ALPHA*B(L,J)

9 DO 70 I = 1,M

10 C(I,J) = C(I,J) + TEMP*A(I,L

)

11 70 CONTINUE

12 80 CONTINUE

13 90 CONTINUE

14 ELSE

15 * Form C := alpha*A**T*B + beta*C

16 DO 120 J = 1,N

17 DO 110 I = 1,M

18 TEMP = ZERO

19 DO 100 L = 1,K

20 TEMP = TEMP + A(L,I)*B(L,J)

21 100 CONTINUE

22 IF (BETA.EQ.ZERO) THEN

23 C(I,J) = ALPHA*TEMP

24 ELSE

25 C(I,J) = ALPHA*TEMP + BETA*C

(I,J)

26 END IF

27 110 CONTINUE

28 120 CONTINUE

29 END IF

30 ELSE

31 IF (NOTA) THEN

Generated C code (an example)
1 #include <stdio.h>

2
3 void GPTBLAS_dgemm(const char *transa , const char *

transb , const int *m, const int *n, const int *k,

const double *alpha , const double *a, const int *

lda , const double *b, const int *ldb , const double

*beta , double *c, const int *ldc)

4 {

5 printf("[gptblas]");

6 int i, j, l;

7 int nota = (* transa == ’N’ || *transa == ’n’);

8 int notb = (* transb == ’N’ || *transb == ’n’);

9 for (j = 0; j < *n; j++) {

10 for (i = 0; i < *m; i++) {

11 double cij = (*beta) * c[i + j * (*ldc)];

12 double sum = 0.0;

13 for (l = 0; l < *k; l++) {

14 double a_val = nota ? a[i + l * (*lda)

] : a[l + i * (*lda)];

15 double b_val = notb ? b[l + j * (*ldb)

] : b[j + l * (*ldb)];

16 sum += a_val * b_val;

17 }

18 c[i + j * (*ldc)] = cij + (*alpha) * sum;

19 }

20 }

21 }

Code structure is not necessarily the same as
the reference Fortran code

4 / 30

Level-1 BLAS Performance (GB/s, n=16777216)

Optimized C code from Optimized C code from
routine name only reference Fortran code

Routine Ref GPT-4.1 o4-mini GPT-4.1 o4-mini

dasum 6.0 68.0 (11.4x) 63.5 (10.7x) 61.5 (10.3x) 63.6 (10.7x)
daxpy 17.2 77.6 (4.5x) 68.8 (4.0x) 71.9 (4.2x) 67.8 (3.9x)
ddot 11.7 65.8 (5.6x) 63.1 (5.4x) 61.0 (5.2x) 60.8 (5.2x)
idamax 7.1 63.8 (9.0x) 65.1 (9.2x) 60.3 (8.6x) 62.8 (8.9x)
dnrm2 5.1 66.5 (12.9x) 64.0 (12.5x) 60.6 (11.8x) 63.5 (12.4x)
drot 10.6 40.6 (3.8x) 34.1 (3.2x) 34.9 (3.3x) 34.4 (3.3x)
drotm 11.1 39.6 (3.6x) 36.6 (3.3x) 34.7 (3.1x) 34.1 (3.1x)

• “Ref”: reference Fortran code (non-parallelized, non-optimized)

• Xeon Gold 6230 (20 cores, Cascade Lake) × 2, 40 threads, gcc/gfortran 11.3.0 -march=native

• Best result among the 10 generated codes

• Blank entries indicate that no working code was generated

5 / 30

Level-2 BLAS Performance (GB/s, m=n=8129)

Optimized C code from Optimized C code from
routine name only reference Fortran code

Routine Parameters Ref GPT-4.1 o4-mini GPT-4.1 o4-mini
dgemv trans=N 9.1 5.4 (0.6x) 30.0 (3.3x) 32.3 (3.5x) 6.6 (0.7x)

trans=T 6.7 68.9 (10.4x) 66.3 (10.0x) 67.6 (10.2x) 65.9 (9.9x)
dger 18.5 46.3 (2.5x) 64.9 (3.5x) 66.4 (3.6x) 64.2 (3.5x)
dsymv uplo=L 6.1 4.6 (0.8x) 4.3 (0.7x)

uplo=U 6.1 5.3 (0.9x) 4.7 (0.8x)
dsyr uplo=L 17.4 32.4 (1.9x) 64.0 (3.7x) 64.5 (3.7x) 60.9 (3.5x)

uplo=U 17.5 61.5 (3.5x) 64.4 (3.7x) 58.9 (3.4x)
dsyr2 uplo=L 7.6 26.4 (3.5x) 63.7 (8.3x) 61.0 (8.0x) 60.2 (7.9x)

uplo=U 15.5 29.0 (1.9x) 59.6 (3.9x) 62.1 (4.0x) 58.6 (3.8x)
dtrmv uplo=L, trans=N, diag=N 7.6 7.3 (1.0x) 3.0 (0.4x) 3.0 (0.4x)

uplo=L, trans=N, diag=U 7.5 7.7 (1.0x) 2.9 (0.4x) 2.9 (0.4x)
uplo=L, trans=T, diag=N 6.5 56.9 (8.8x) 3.3 (0.5x) 3.2 (0.5x)
uplo=L, trans=T, diag=U 6.5 56.3 (8.7x) 3.3 (0.5x) 3.2 (0.5x)
uplo=U, trans=N, diag=N 9.0 7.6 (0.8x) 3.1 (0.3x) 3.1 (0.3x)
uplo=U, trans=N, diag=U 8.8 7.6 (0.9x) 3.1 (0.3x) 3.1 (0.4x)
uplo=U, trans=T, diag=N 6.1 56.7 (9.3x) 3.2 (0.5x) 3.2 (0.5x)
uplo=U, trans=T, diag=U 6.1 56.4 (9.3x) 3.2 (0.5x) 3.2 (0.5x)

• “Ref”: reference Fortran code (non-parallelized, non-optimized)
• Xeon Gold 6230 (20 cores, Cascade Lake) × 2, 40 threads, gcc/gfortran 11.3.0 -march=native
• Best result among the 10 generated codes
• Blank entries indicate that no working code was generated

6 / 30

Level-3 BLAS Performance (GFlops/s, m=n=k=2048)

Optimized C code from Optimized C code from
routine name only reference Fortran code

Routine Parameters Ref GPT-4.1 o4-mini GPT-4.1 o4-mini
dgemm transa=N, transb=N 2.7 17.4 (6.5x) 20.5 (7.7x) 18.0 (6.8x) 20.8 (7.8x)

transa=N, transb=T 2.5 16.5 (6.5x) 16.1 (6.3x) 20.7 (8.1x)
transa=T, transb=N 1.8 16.8 (9.3x) 0.8 (0.5x) 29.2 (16.1x) 23.8 (13.1x)
transa=T, transb=T 0.3 15.7 (46.3x) 3.5 (10.4x) 20.3 (59.8x)

dsymm side=L, uplo=L 3.6 13.6 (3.7x) 17.2 (4.7x) 19.9 (5.5x) 22.3 (6.2x)
side=L, uplo=U 3.5 13.9 (4.0x) 17.3 (4.9x) 19.9 (5.7x) 22.4 (6.4x)
side=R, uplo=L 2.7 13.4 (4.9x) 16.4 (6.0x) 19.0 (7.0x) 21.2 (7.8x)
side=R, uplo=U 2.7 13.4 (4.9x) 21.3 (7.8x) 18.7 (6.8x) 21.1 (7.7x)

dsyrk uplo=L, trans=N 1.0 2.9 (2.9x) 18.2 (18.2x) 16.6 (16.6x)
uplo=L, trans=T 1.9 20.1 (10.6x) 21.8 (11.5x) 27.7 (14.7x) 23.0 (12.2x)
uplo=U, trans=N 2.3 3.8 (1.6x) 16.5 (7.1x) 16.5 (7.1x)
uplo=U, trans=T 1.9 36.5 (19.2x) 21.0 (11.0x) 34.7 (18.2x) 22.5 (11.9x)

dsyr2k uplo=L, trans=N 1.8 31.0 (16.8x) 18.4 (10.0x)
uplo=L, trans=T 3.1 42.9 (13.8x) 29.6 (9.5x) 23.1 (7.4x)
uplo=U, trans=N 3.1 30.2 (9.9x) 18.1 (5.9x)
uplo=U, trans=T 3.1 43.2 (13.7x) 27.4 (8.7x) 23.0 (7.3x)

• “Ref”: reference Fortran code (non-parallelized, non-optimized)

• Xeon Gold 6230 (20 cores, Cascade Lake) × 2, 40 threads, gcc/gfortran 11.3.0 -march=native

• Best result among the 10 generated codes

• Blank entries indicate that no working code was generated

7 / 30

Optimized Code / Summary

• Performance optimization is very poor...

• OpenMP is applied, but not always with the optimal strategy

• SIMD is often applied with #pragma omp simd or AVX2/AVX-512 intrinsics
▶ Code branching is implemented with macros (AVX , AVX512F)

• Block size is often arbitrarily set to 64 (some cases use 128 or 256)

• Difficult to generate sufficiently optimized code in one shot from a single simple prompt

• GEMM is not necessarily easy

8 / 30

Auto-Tuning System Using Local LLMs on Consumer-Grade PCs

Why Local LLMs? – Issues with Commercial Services

• High costs: Cloud-based API usage fees or subscription charges

• Black box: Closed source, making custom improvements and verification difficult for R&D

• Security concerns: Code and research data processed on external servers

Objective 1: Building a Lightweight System Runnable on Consumer-Grade Local PCs

• High-end open-source models are available but require large-scale computing resources

• For research purpose: to examine techniques to compensate for limited model performance

Objective 2: Specializing in Performance Optimization of HPC Code

• HPC code development is more challenging than general code development

• Performance optimization is not just about “making it work”

• An iterative code improvement process (implement → evaluate → modify) is required

9 / 30

Expectations for Local LLMs Runnable on Consumer-Grade PCs

3)
3)Source: https://epoch.ai/data-insights/consumer-gpu-model-gap

10 / 30

Our Prototype System

Simple Automatic Code Optimization System for Local PCs

• This is more like a toy, still just practice ...

• Multi-agent system to compensate for limited model performance

• Automatic iterative prompt generation for autonomous optimization (non-stop without
human intervention)

• Using gpt-oss-120b (for now)

OpenAI gpt-oss-120b4) (August 2025)

• Open model with approximately 120 billion parameters (about 80 GB needed)

• Comparable performance to o4-mini (recall the results of BLAS generation)

• Can run on AMD Ryzen AI Max+ 395 with 128GB unified memory5)

• PC price: approximately $2,000 → Can be considered “runnable on consumer-grade PCs”

4)https://github.com/openai/gpt-oss
5)https://www.amd.com/en/products/processors/laptop/ryzen/ai-300-series/amd-ryzen-ai-max-plus-395.html

11 / 30

https://github.com/openai/gpt-oss
https://www.amd.com/en/products/processors/laptop/ryzen/ai-300-series/amd-ryzen-ai-max-plus-395.html

System Workflow: Iterative Optimization Phase

• Initial prompt: “Optimize this code for the target processor” (actually more complicated)

1. Programmer (PG) 1 – PG 5: Code generation
▶ Each PG independently creates code

2. Testing and benchmarking each code
▶ Generated code is compiled and verified/evaluated using test programs

3. Debugger (DG): Debugging
▶ DG analyzes the cause when errors occur and PG modifies the code (up to 2 retries)

4. PG 1 – PG 5: Code analysis
▶ Analyzes which optimizations contributed to performance improvement or degradation

5. Project Manager (PM): Optimization strategy planning for next iteration
▶ Collects analysis results from PGs and generates different prompts for each PG
▶ Adopts the fastest code as the base for the next generation

• Repeat from step 1 until maximum iterations or time limit is reached

12 / 30

System Specification

• The user does not give any target-code-specific instructions to the system – any prompts
are given; the system automatically generates iterative prompts from the initial prompt to
proceed with optimization

• Optimization target is one file (computation kernel in our evaluation)

• Makefile, compiler options, execution way cannot be changed

• Benchmark and verification program is given by user (system does not edit this)

• Using gpt-oss-120b (temperature = 1.5 for high randomness) via Cerebras inference API

13 / 30

Performance Evaluation Environment

Evaluation Environment

• Xeon Gold 6230 (20 cores) × 2 (2688 GFlops/s in FP64, 281.5 GB/s)

• gcc 11.3.0, -O3 -march=native -fopenmp -lm -lpthread (system cannot change)

• MKL links and paths configured for verification and performance comparison (practically
MKL can be used in the optimization code)

Conditions

• Strings that could reveal code content are not passed to the LLM

• Use of MKL is prohibited in optimization (but violated sometimes...)

14 / 30

Test 1: DGEMM

Input Code

1 void exp1_opt(int N,
2 double *A,
3 double *B,
4 double *C) {
5 for (int i = 0; i < N; i++) {
6 for (int j = 0; j < N; j++) {
7 double sum = 0.0;
8 for (int k = 0; k < N; k++) {
9 sum += A[i*N+k] * B[k*N+j];

10 }
11 C[i*N+j] = sum;
12 }
13 }
14 }

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
F

lo
ps

/s
)

Code Generation

Performance Progress - DGEMM

run 1
run 2

run 3
run 4

run 5

Attention!: how to read the figure

• 5 experiments (run 1 – 5) were performed with the same input and under the same
conditions, due to random nature of LLM outputs

• The horizontal axis represents the number of iterations (code generations)
• Each iteration generates 5 codes, and the performance of the fastest code is plotted

15 / 30

Test 1: DGEMM

Input Code

1 void exp1_opt(int N,
2 double *A,
3 double *B,
4 double *C) {
5 for (int i = 0; i < N; i++) {
6 for (int j = 0; j < N; j++) {
7 double sum = 0.0;
8 for (int k = 0; k < N; k++) {
9 sum += A[i*N+k] * B[k*N+j];

10 }
11 C[i*N+j] = sum;
12 }
13 }
14 }

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
F

lo
ps

/s
)

Code Generation

Performance Progress - DGEMM

run 1
run 2

run 3
run 4

run 5

• Performance evaluated with n = 1024 square matrices (small for target)

• Fastest: 1537.06 GFlops/s in run 5, but this called MKL’s dgemm
→ LLM recognized this code as a mat-mul (but use of BLAS was prohibited in prompt)

• Full-scratch fastest: 1173.42 GFlops/s at Gen. 18 of run 1

• Large variation in results across runs

16 / 30

Fastest Generated DGEMM Code (1/3)

1 static inline void pack_B_panel(const double *B_src ,
double *B_pack , int N, int kp, int jp, int k_max ,
int blk_width) {

2 for (int k = kp; k < k_max; ++k) {
3 const double *src = &B_src[k * N + jp];
4 double *dst = &B_pack [(k - kp) * blk_width];
5 int j = 0;
6 _mm_prefetch ((const char *)src , _MM_HINT_T0);
7 for (; j + 8 <= blk_width; j += 8) {
8 __m512d v = _mm512_loadu_pd (&src[j]);
9 _mm512_storeu_pd (&dst[j], v);

10 }
11 for (; j < blk_width; ++j) { dst[j] = src[j]; }
12 }
13 _mm_sfence ();
14 }
15 void exp1_opt(int N, double *restrict A, double *

restrict B, double *restrict C) {
16 const int BLOCK = 64;
17 omp_set_num_threads(omp_get_max_threads ());
18 #pragma omp parallel for collapse (2) schedule(static)
19 for (int ii = 0; ii < N; ii += BLOCK) {
20 for (int jj = 0; jj < N; jj += BLOCK) {
21 int i_max = (ii + BLOCK > N) ? N : ii + BLOCK;
22 int j_max = (jj + BLOCK > N) ? N : jj + BLOCK;
23 int blk_width = j_max - jj;
24 int vec_width = blk_width & ~31;
25 double C_local[BLOCK * BLOCK] __attribute__ ((

aligned (64)));
26 double *C_local_aligned = (double *)

__builtin_assume_aligned(C_local , 64);
27 for (int i = 0; i < BLOCK * BLOCK; ++i)

C_local_aligned[i] = 0.0;
28 for (int kk = 0; kk < N; kk += BLOCK) {
29 int k_max = (kk + BLOCK > N) ? N : kk +

BLOCK;
30 double B_pack_local[BLOCK * BLOCK]

__attribute__ ((aligned (64)));
31 pack_B_panel(B, B_pack_local , N, kk, jj ,

k_max , blk_width);
32 for (int i = ii; i + 3 < i_max; i += 4) {
33 const double *a_row0 = &A[(i + 0) * N +

kk];

34 const double *a_row1 = &A[(i + 1) * N +
kk];

35 const double *a_row2 = &A[(i + 2) * N +
kk];

36 const double *a_row3 = &A[(i + 3) * N +
kk];

37 double *c_loc0 = &C_local_aligned [(i - ii
) * BLOCK];

38 double *c_loc1 = &C_local_aligned [(i - ii
+ 1) * BLOCK];

39 double *c_loc2 = &C_local_aligned [(i - ii
+ 2) * BLOCK];

40 double *c_loc3 = &C_local_aligned [(i - ii
+ 3) * BLOCK];

41 for (int j = 0; j < vec_width; j += 16) {
42 __m512d c00 = _mm512_loadu_pd (& c_loc0[

j + 0]);
43 __m512d c01 = _mm512_loadu_pd (& c_loc0[

j + 8]);
44 __m512d c10 = _mm512_loadu_pd (& c_loc1[

j + 0]);
45 __m512d c11 = _mm512_loadu_pd (& c_loc1[

j + 8]);
46 __m512d c20 = _mm512_loadu_pd (& c_loc2[

j + 0]);
47 __m512d c21 = _mm512_loadu_pd (& c_loc2[

j + 8]);
48 __m512d c30 = _mm512_loadu_pd (& c_loc3[

j + 0]);
49 __m512d c31 = _mm512_loadu_pd (& c_loc3[

j + 8]);
50 for (int k = kk; k < k_max; ++k) {
51 const int k_off = k - kk;
52 __m512d b0 = _mm512_load_pd (&

B_pack_local[k_off * blk_width
+ j + 0]);

53 __m512d b1 = _mm512_load_pd (&
B_pack_local[k_off * blk_width
+ j + 8]);

54 __m512d a0 = _mm512_set1_pd(a_row0[
k_off]);

55 __m512d a1 = _mm512_set1_pd(a_row1[
k_off]);

17 / 30

Fastest Generated DGEMM Code (2/3)

56 __m512d a2 = _mm512_set1_pd(a_row2[
k_off]);

57 __m512d a3 = _mm512_set1_pd(a_row3[
k_off]);

58 c00 = _mm512_fmadd_pd(a0 , b0 , c00);
c01 = _mm512_fmadd_pd(a0 , b1,
c01);

59 c10 = _mm512_fmadd_pd(a1 , b0 , c10);
c11 = _mm512_fmadd_pd(a1 , b1,
c11);

60 c20 = _mm512_fmadd_pd(a2 , b0 , c20);
c21 = _mm512_fmadd_pd(a2 , b1,
c21);

61 c30 = _mm512_fmadd_pd(a3 , b0 , c30);
c31 = _mm512_fmadd_pd(a3 , b1,
c31);

62 }
63 _mm512_storeu_pd (& c_loc0[j + 0], c00);

_mm512_storeu_pd (& c_loc0[j + 8],
c01);

64 _mm512_storeu_pd (& c_loc1[j + 0], c10);
_mm512_storeu_pd (& c_loc1[j + 8],
c11);

65 _mm512_storeu_pd (& c_loc2[j + 0], c20);
_mm512_storeu_pd (& c_loc2[j + 8],
c21);

66 _mm512_storeu_pd (& c_loc3[j + 0], c30);
_mm512_storeu_pd (& c_loc3[j + 8],
c31);

67 }
68 for (int j = vec_width; j < blk_width; ++

j) {
69 double s0 = c_loc0[j]; double s1 =

c_loc1[j];
70 double s2 = c_loc2[j]; double s3 =

c_loc3[j];
71 for (int k = kk; k < k_max; ++k) {
72 const int k_off = k - kk;
73 double b = B_pack_local[k_off *

blk_width + j];
74 s0 += a_row0[k_off] * b; s1 +=

a_row1[k_off] * b;

75 s2 += a_row2[k_off] * b; s3 +=
a_row3[k_off] * b;

76 }
77 c_loc0[j] = s0; c_loc1[j] = s1; c_loc2

[j] = s2; c_loc3[j] = s3;
78 }
79 }
80 for (int i = i_max - ((i_max - ii) % 4); i <

i_max; ++i) {
81 const double *a_ptr = &A[i * N + kk];
82 double *c_loc = &C_local_aligned [(i - ii)

* BLOCK];
83 for (int j = 0; j < vec_width; j += 8) {
84 __m512d c_vec = _mm512_loadu_pd (&c_loc

[j]);
85 for (int k = kk; k < k_max; ++k) {
86 const int k_off = k - kk;
87 __m512d b_vec = _mm512_load_pd (&

B_pack_local[k_off * blk_width
+ j]);

88 __m512d a_vec = _mm512_set1_pd(
a_ptr[k_off]);

89 c_vec = _mm512_fmadd_pd(a_vec ,
b_vec , c_vec);

90 }
91 _mm512_storeu_pd (& c_loc[j], c_vec);
92 }
93 for (int j = vec_width; j < blk_width; ++

j) {
94 double sum = c_loc[j];
95 for (int k = kk; k < k_max; ++k) {
96 const int k_off = k - kk;
97 sum += a_ptr[k_off] * B_pack_local[

k_off * blk_width + j];
98 }
99 c_loc[j] = sum;

100 }
101 }
102 }
103 for (int i = ii; i < i_max; ++i) {
104 double *c_ptr = &C[i * N + jj];
105 double *c_loc = &C_local_aligned [(i - ii) *

BLOCK];

18 / 30

Fastest Generated DGEMM Code (3/3)

106 c_ptr = (double *) __builtin_assume_aligned(
c_ptr , 64);

107 c_loc = (double *) __builtin_assume_aligned(
c_loc , 64);

108 int j = 0;
109 for (; j < vec_width; j += 8) {
110 __m512d tmp = _mm512_loadu_pd (& c_loc[j]);
111 _mm512_storeu_pd (& c_ptr[j], tmp);
112 }
113 for (; j < blk_width; ++j) {
114 c_ptr[j] = c_loc[j];
115 }
116 }
117 }
118 }
119 }

*Due to space limitations, auto-inserted comments, blank lines,
and header includes were removed from the actual generated
code, and indentation/line breaks were partially modified.

19 / 30

Test 2: DTRSM

Input Code

1 void exp2_opt(int N,
2 double *A, double *B,
3 double *X, double alpha) {
4 for (int i = 0; i < N; i++) {
5 for (int j = 0; j < N; j++) {
6 X[i*N+j] = alpha * B[i*N+j];
7 }
8 }
9 for (int j = 0; j < N; j++) {

10 for (int i = 0; i < N; i++) {
11 for (int k = 0; k < i; k++) {
12 X[i*N+j] -= A[i*N+k]*X[k*N+j];
13 }
14 X[i*N+j] /= A[i*N+i];
15 }
16 }
17 }

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
F

lo
ps

/s
)

Code Generation

Performance Progress - DTRSM

run 1
run 2

run 3
run 4

run 5

• Solving equations with triangular matrix coefficients (lower triangular, n = 1024); more
complex data dependencies than DGEMM; high optimization difficulty

• Fastest: 146.33 GFlops/s at Gen.19 of run 4 (MKL: 305.74 GFlops/s, 48% of MKL)

• Not observed in this experiment, but cases using MKL were seen during test runs

20 / 30

Fastest Generated DTRSM Code (part)

1 #define COL_BLOCK 8
2 void exp2_opt(int N, double * restrict A, double *

restrict B,
3 double * restrict X, double alpha) {
4 double inv_diag[N] __attribute__ ((aligned (64)));
5 double *trans_X = (double *) aligned_alloc (64, (size_t)

N * N * sizeof(double));
6 #pragma omp parallel for schedule(static)
7 for (int i = 0; i < N; ++i) {
8 double *xrow = X + i * N;
9 double *brow = B + i * N;

10 int j = 0;
11 __m512d valpha = _mm512_set1_pd(alpha);
12 for (; j <= N-8; j += 8) {
13 __m512d v = _mm512_loadu_pd(brow + j);
14 v = _mm512_mul_pd(v, valpha);
15 _mm512_storeu_pd(xrow + j, v);
16 }
17 for (; j < N; ++j) xrow[j] = alpha * brow[j];
18 inv_diag[i] = 1.0 / A[i * N + i];
19 }
20 const int BS = 64;
21 #pragma omp parallel for collapse (2) schedule(static)
22 for (int i0 = 0; i0 < N; i0 += BS) {
23 for (int j0 = 0; j0 < N; j0 += BS) {
24 int i_max = i0 + BS < N ? i0 + BS : N;
25 int j_max = j0 + BS < N ? j0 + BS : N;
26 for (int i = i0; i < i_max; ++i) {
27 double *xrow = X + i * N;
28 for (int j = j0; j < j_max; ++j) {
29 trans_X[j * N + i] = xrow[j];
30 }
31 }
32 }
33 }
34 #pragma omp parallel
35 {
36 #pragma omp for schedule(runtime) nowait
37 for (int jb = 0; jb < N; jb += COL_BLOCK) {
38 int j_end = (jb + COL_BLOCK < N) ? jb +

COL_BLOCK : N;
39 #pragma omp task depend(inout: trans_X[jb * N])
40 {
41 for (int j = jb; j < j_end; ++j) {

42 double *xcol = trans_X + j * N;
43 #pragma omp simd
44 for (int i = 0; i < N; ++i) {
45 const double *arow = A + i * N;
46 __m512d vsum = _mm512_setzero_pd ();
47 int limit = i & ~7;
48 if (limit >= 8) {
49 _mm_prefetch(arow + 8, _MM_HINT_T0)

;
50 _mm_prefetch(xcol + 8, _MM_HINT_T0)

;
51 __m512d a_prev = _mm512_loadu_pd(

arow);
52 __m512d x_prev = _mm512_loadu_pd(

xcol);
53 int k = 8;
54 for (; k < limit; k += 8) {
55 _mm_prefetch(arow + k + 8,

_MM_HINT_T0);
56 _mm_prefetch(xcol + k + 8,

_MM_HINT_T0);
57 __m512d a_cur = _mm512_loadu_pd(

arow + k);
58 __m512d x_cur = _mm512_loadu_pd(

xcol + k);
59 vsum = _mm512_fmadd_pd(a_prev ,

x_prev , vsum);
60 a_prev = a_cur; x_prev = x_cur;
61 }
62 vsum = _mm512_fmadd_pd(a_prev ,

x_prev , vsum);
63 }
64 int rem = i - limit;
65 if (rem) {
66 _mm_prefetch(arow + limit + 8,

_MM_HINT_T0);
67 _mm_prefetch(xcol + limit + 8,

_MM_HINT_T0);
68 __mmask8 m = (1U << rem) - 1U;
69 __m512d a = _mm512_maskz_loadu_pd(m

, arow + limit);
70 __m512d x = _mm512_maskz_loadu_pd(m

, xcol + limit);
71 vsum = _mm512_fmadd_pd(a, x, vsum);

21 / 30

Test 3: DCSRMM

Input Code
1 void exp3_opt(int m, int k, int n,
2 const int *row_ptr ,
3 const int *col_indices ,
4 const double *values ,
5 const double *B, double *C) {
6 memset(C, 0, m*n*sizeof(double));
7 for (int i = 0; i < m; i++) {
8 int row_start = row_ptr[i];
9 int row_end = row_ptr[i + 1];

10 for (int idx=row_start;
11 idx <row_end; idx ++) {
12 int col = col_indices[idx];
13 double val = values[idx];
14 for (int j = 0; j < n; j++) {
15 C[i*n+j] += val*B[col*n+j];
16 }
17 }
18 }
19 }

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
B

/s
)

Code Generation

Performance Progress - DCSRMM

run 1
run 2

run 3
run 4

run 5

• Sparse-dense mat-mul in CSR format (gridgena.mtx: n = 48962, nnz = 512084, RHS
width m = 128); irregular memory access; depends on sparse structure

• Fastest: 78.45 GB/s at Gen. 15 of run 5 (MKL: 86.88 GB/s, 90% of MKL)

• Attempted FP16 (failed), CSC and ELLPACK format changes (failed) → sparse matrix
structure was recognized

22 / 30

Fastest Generated DCSRMM Code (part)

1 #define UNROLL_FACTOR 4
2 #define VEC_WIDTH 8
3 #define UNROLL_STEP (UNROLL_FACTOR * VEC_WIDTH)
4 void exp3_opt(int m, int k, int n,
5 const int *__restrict row_ptr ,
6 const int *__restrict col_indices ,
7 const double *__restrict values ,
8 const double *__restrict B,
9 double *__restrict C) {

10 int block_n = 64;
11 const char *env_n = getenv("BLOCK_N");
12 if (env_n) { int v = atoi(env_n); if (v > 0) block_n

= v; }
13 int block_m = 128;
14 const char *env_m = getenv("BLOCK_M");
15 if (env_m) { int v = atoi(env_m); if (v > 0) block_m

= v; }
16 int block_shift = 0;
17 while ((1 << block_shift) < block_n) ++ block_shift;
18 #pragma omp parallel for schedule(static)
19 for (int i0 = 0; i0 < m; i0 += block_m) {
20 int i1 = i0 + block_m;
21 if (i1 > m) i1 = m;
22 for (int i = i0; i < i1; ++i) {
23 double *c_row = C + (size_t)i * n;
24 int row_start = row_ptr[i];
25 int row_end = row_ptr[i + 1];
26 for (int idx = row_start; idx < row_end; ++idx)

{
27 int col = col_indices[idx];
28 double val = values[idx];
29 __m512d val_vec = _mm512_set1_pd(val);
30 int block_id = col >> block_shift;
31 int col_off = col & (block_n - 1);
32 const double *b_ptr = B +
33 ((size_t)block_id * block_n + (size_t)

col_off) * n;
34 int j = 0;
35 int unroll_limit = n - (n % UNROLL_STEP);
36 for (; j < unroll_limit; j += UNROLL_STEP) {
37 __m512d c0 = _mm512_loadu_pd(c_row + j);
38 __m512d b0 = _mm512_loadu_pd(b_ptr + j);
39 __m512d c1 = _mm512_loadu_pd(c_row + j +

VEC_WIDTH);

40 __m512d b1 = _mm512_loadu_pd(b_ptr + j +
VEC_WIDTH);

41 __m512d c2 = _mm512_loadu_pd(c_row + j +
2 * VEC_WIDTH);

42 __m512d b2 = _mm512_loadu_pd(b_ptr + j +
2 * VEC_WIDTH);

43 __m512d c3 = _mm512_loadu_pd(c_row + j +
3 * VEC_WIDTH);

44 __m512d b3 = _mm512_loadu_pd(b_ptr + j +
3 * VEC_WIDTH);

45 c0 = _mm512_fmadd_pd(val_vec , b0 , c0);
46 c1 = _mm512_fmadd_pd(val_vec , b1 , c1);
47 c2 = _mm512_fmadd_pd(val_vec , b2 , c2);
48 c3 = _mm512_fmadd_pd(val_vec , b3 , c3);
49 _mm512_storeu_pd(c_row + j, c0);
50 _mm512_storeu_pd(c_row + j + VEC_WIDTH ,

c1);
51 _mm512_storeu_pd(c_row + j + 2 *

VEC_WIDTH , c2);
52 _mm512_storeu_pd(c_row + j + 3 *

VEC_WIDTH , c3);
53 }
54 int tail_rem = n - j;
55 int tail_vec = tail_rem & ~7;
56 for (int t = 0; t < tail_vec; t += VEC_WIDTH

) {
57 __m512d c_vec = _mm512_loadu_pd(c_row + j

+ t);
58 __m512d b_vec = _mm512_loadu_pd(b_ptr + j

+ t);
59 c_vec = _mm512_fmadd_pd(val_vec , b_vec ,

c_vec);
60 _mm512_storeu_pd(c_row + j + t, c_vec);
61 }
62 int tail_elem = tail_rem - tail_vec;
63 if (tail_elem) {
64 __mmask8 mask = (1U << tail_elem) - 1;
65 __m512d c_mask = _mm512_maskz_loadu_pd(

mask , c_row + j + tail_vec);
66 __m512d b_mask = _mm512_maskz_loadu_pd(

mask , b_ptr + j + tail_vec);
67 c_mask = _mm512_fmadd_pd(val_vec , b_mask ,

c_mask);

23 / 30

Test 1: DGEMM (CUDA)

Input Code
1 __global__ void exp1_kernel(int N, const

double *A, const double *B, double *C) {
2 int row = blockIdx.y * blockDim.y +

threadIdx.y;
3 int col = blockIdx.x * blockDim.x +

threadIdx.x;
4 if (row < N && col < N) {
5 double sum = 0.0;
6 for (int k = 0; k < N; k++) {
7 sum += A[row * N + k] * B[k * N +

col];
8 }
9 C[row * N + col] = sum;

10 }
11 }
12 extern "C" void exp1_opt_kernel(int N, const

double *d_A , const double *d_B , double *
d_C) {

13 dim3 blockDim (16, 16);
14 dim3 gridDim ((N + blockDim.x - 1) /

blockDim.x, (N + blockDim.y - 1) /
blockDim.y);

15 exp1_kernel <<<gridDim , blockDim >>>(N, d_A
, d_B , d_C);

16 cudaDeviceSynchronize ();
17 }

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
F

lo
ps

/s
)

Code Generation

Performance Progress - exp1

run 1
run 2

run 3
run 4

run 5

Target: Tesla V100 (one GPU，7000 GFlops/s
in FP64)
Best code: 3628.29 GFlops/s
cuBLAS: 6168.09 GFlops/s

24 / 30

Fastest Generated DGEMM Code (CUDA) (1/3)

1 #include <cuda_runtime.h>
2 #include <stdlib.h>
3
4 extern "C" cudaError_t cudaGetDeviceProperties_v2(

cudaDeviceProp *prop , int device) {
5 return cudaGetDeviceProperties(prop , device);
6 }
7
8 extern "C" long __isoc23_strtol(const char *nptr , char

**endptr , int base) {
9 return strtol(nptr , endptr , base);

10 }
11
12 #define TILE 32 // ×3232 タイル
13 #define K_UNROLL 32
14
15 // 手動アンロールマクロ
16 #define UNROLL_K(iter)

\
17 do {

\
18 double a0 = As[calc][threadIdx.y*2 + 0][iter];

\
19 double a1 = As[calc][threadIdx.y*2 + 1][iter];

\
20 double b0 = Bs[calc][iter][threadIdx.x*2 + 0];

\
21 double b1 = Bs[calc][iter][threadIdx.x*2 + 1];

\
22 regC [0][0] += a0 * b0;

\
23 regC [0][1] += a0 * b1;

\
24 regC [1][0] += a1 * b0;

\
25 regC [1][1] += a1 * b1;

\
26 } while (0)
27
28 __global__ void exp1_kernel(int N, const double *

__restrict__ A,
29 const double *__restrict__ B

,
30 double *__restrict__ C) {

31 double regC [2][2] = {{0.0, 0.0},
32 {0.0, 0.0}}; //

×22 出力
33
34 __shared__ double As[2][TILE][TILE];
35 __shared__ double Bs[2][TILE][TILE];
36
37 int numTiles = (N + TILE - 1) / TILE;
38
39 int baseRow = blockIdx.y * TILE + threadIdx.y * 2;

// 2 行担当
40 int baseCol = blockIdx.x * TILE + threadIdx.x * 2;

// 2 列担当
41
42 // ---- 1st タイルを load (ping = 0) ----
43 int ping = 0;
44 for (int dy = 0; dy < 2; ++dy) {
45 int aRow = baseRow + dy;
46 int aCol = 0 * TILE + threadIdx.x * 2;
47 double4 a_pair = *((double4 *)(A + aRow * N +

aCol));
48 double a0 = a_pair.x;
49 double a1 = a_pair.y;
50 As[ping][threadIdx.y * 2 + dy][threadIdx.x * 2]

= a0;
51 As[ping][threadIdx.y * 2 + dy][threadIdx.x * 2 +

1] = a1;
52 }
53 for (int dy = 0; dy < 2; ++dy) {
54 int bRow = 0 * TILE + threadIdx.y * 2 + dy;
55 int bCol = baseCol;
56 double4 b_pair = *((double4 *)(B + bRow * N +

bCol));
57 double b0 = b_pair.x;
58 double b1 = b_pair.y;
59 Bs[ping][threadIdx.y * 2 + dy][threadIdx.x * 2]

= b0;
60 Bs[ping][threadIdx.y * 2 + dy][threadIdx.x * 2 +

1] = b1;
61 }
62 __syncthreads ();

// 初期タイルロード
待ち

63
64 for (int t = 0; t < numTiles; ++t) {

25 / 30

Fastest Generated DGEMM Code (CUDA) (2/3)

65 int calc = ping;
// 現在計算に使用する

バッファ
66
67 // ---- 計算 (calc バッファ) ----
68 UNROLL_K (0); UNROLL_K (1); UNROLL_K (2);

UNROLL_K (3);
69 UNROLL_K (4); UNROLL_K (5); UNROLL_K (6);

UNROLL_K (7);
70 UNROLL_K (8); UNROLL_K (9); UNROLL_K (10);

UNROLL_K (11);
71 UNROLL_K (12); UNROLL_K (13); UNROLL_K (14);

UNROLL_K (15);
72 UNROLL_K (16); UNROLL_K (17); UNROLL_K (18);

UNROLL_K (19);
73 UNROLL_K (20); UNROLL_K (21); UNROLL_K (22);

UNROLL_K (23);
74 UNROLL_K (24); UNROLL_K (25); UNROLL_K (26);

UNROLL_K (27);
75 UNROLL_K (28); UNROLL_K (29); UNROLL_K (30);

UNROLL_K (31);
76
77 // 次タイルを prefetch (ping バッファ) ―すでに最後の場合はスキップ
78 ping = 1 - ping;

// バッファを反転
79 if (t + 1 < numTiles) {
80 for (int dy = 0; dy < 2; ++dy) {
81 int aRow = baseRow + dy;
82 int aCol = (t + 1) * TILE + threadIdx.x

* 2;
83 double4 a_pair = *((double4 *)(A + aRow *

N + aCol));
84 double a0 = a_pair.x;
85 double a1 = a_pair.y;
86 As[ping][threadIdx.y * 2 + dy][threadIdx

.x * 2] = a0;
87 As[ping][threadIdx.y * 2 + dy][threadIdx

.x * 2 + 1] = a1;
88 }
89 for (int dy = 0; dy < 2; ++dy) {
90 int bRow = (t + 1) * TILE + threadIdx.y

* 2 + dy;
91 int bCol = baseCol;

92 double4 b_pair = *((double4 *)(B + bRow *
N + bCol));

93 double b0 = b_pair.x;
94 double b1 = b_pair.y;
95 Bs[ping][threadIdx.y * 2 + dy][threadIdx

.x * 2] = b0;
96 Bs[ping][threadIdx.y * 2 + dy][threadIdx

.x * 2 + 1] = b1;
97 }
98 }
99 __syncthreads ();

// 次計算に備える
100 }
101
102 // ---- 書き戻し ----
103 C[baseRow * N + baseCol] = regC

[0][0];
104 C[baseRow * N + baseCol + 1] = regC

[0][1];
105 C[(baseRow + 1) * N + baseCol] = regC

[1][0];
106 C[(baseRow + 1) * N + baseCol + 1] = regC

[1][1];
107 }
108
109 extern "C" void exp1_opt_kernel(int N, const double *d_A

,
110 const double *d_B ,

double *d_C) {
111 if (N % 8 != 0) {
112 int Npad = ((N + 7) / 8) * 8;
113 size_t pitch_pad = (size_t)Npad * sizeof(double)

;
114 size_t pitch_orig = (size_t)N * sizeof(double);
115 double *d_Apad = nullptr , *d_Bpad = nullptr , *

d_Cpad = nullptr;
116 cudaMalloc (&d_Apad , pitch_pad * Npad);
117 cudaMalloc (&d_Bpad , pitch_pad * Npad);
118 cudaMalloc (&d_Cpad , pitch_pad * Npad);
119 cudaMemset(d_Apad , 0, pitch_pad * Npad);
120 cudaMemset(d_Bpad , 0, pitch_pad * Npad);
121 cudaMemset(d_Cpad , 0, pitch_pad * Npad);

26 / 30

Fastest Generated DGEMM Code (CUDA) (2/3)

122 cudaMemcpy2D(d_Apad , pitch_pad , d_A , pitch_orig ,
123 pitch_orig , N,

cudaMemcpyDeviceToDevice);
124 cudaMemcpy2D(d_Bpad , pitch_pad , d_B , pitch_orig ,
125 pitch_orig , N,

cudaMemcpyDeviceToDevice);
126
127 dim3 blockDim(TILE / 2, TILE / 2);
128 dim3 gridDim ((Npad + TILE - 1) / TILE , (Npad +

TILE - 1) / TILE);
129 exp1_kernel <<<gridDim , blockDim >>>(Npad , d_Apad ,

d_Bpad , d_Cpad);
130 cudaDeviceSynchronize ();
131
132 cudaMemcpy2D(d_C , pitch_orig , d_Cpad , pitch_pad ,
133 pitch_orig , N,

cudaMemcpyDeviceToDevice);
134
135 cudaFree(d_Apad);
136 cudaFree(d_Bpad);
137 cudaFree(d_Cpad);
138 return;
139 }
140
141 dim3 blockDim(TILE / 2, TILE / 2);

// ×1616 スレッド
142 dim3 gridDim ((N + TILE - 1) / TILE , (N + TILE - 1) /

TILE);
143 exp1_kernel <<<gridDim , blockDim >>>(N, d_A , d_B , d_C)

;
144 cudaDeviceSynchronize ();
145 }
146
147 #undef K_UNROLL
148 #undef UNROLL_K

27 / 30

Test 2: DTRSM (CUDA)

1 __global__ void kernel1(int N, const double *B,
double *X, double alpha) {

2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idx < N * N)
4 X[idx] = alpha * B[idx];
5 }
6 __global__ void kernel2(int N, int row , const double

*A, double *X) {
7 int col = blockIdx.x * blockDim.x + threadIdx.x;
8 if (col < N) {
9 double sum = 0.0;

10 for (int k = 0; k < row; k++) {
11 sum += A[row * N + k] * X[k * N + col];
12 }
13 X[row * N + col] = (X[row * N + col] - sum)

/ A[row * N + row];
14 }
15 }
16 extern "C" void exp2_opt_kernel(int N, const double

*d_A , const double *d_B , double *d_X , double
alpha) {

17 int total = N * N;
18 int threads = 256;
19 int blocks = (total + threads - 1) / threads;
20 kernel1 <<<blocks , threads >>>(N, d_B , d_X , alpha)

;
21 cudaDeviceSynchronize ();
22 threads = 256;
23 blocks = (N + threads - 1) / threads;
24 for (int i = 0; i < N; i++) {
25 kernel2 <<<blocks , threads >>>(N, i, d_A , d_X)

;
26 cudaDeviceSynchronize ();
27 }
28 }

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
F

lo
ps

/s
)

Code Generation

Performance Progress - exp2

run 1
run 2

run 3
run 4

run 5

Best code: 151.59 GFlops/s
cuBLAS: 1278.75 GFlops/s

28 / 30

Test 3: DCSRMM (CUDA)

1 __global__ void exp3_kernel(int m, int n, const
int *row_ptr , const int *col_indices , const
double *values , const double *B, double *C) {

2 int row = blockIdx.x * blockDim.x + threadIdx
.x;

3 int col = blockIdx.y * blockDim.y + threadIdx
.y;

4 if (row < m && col < n) {
5 double sum = 0.0;
6 int row_start = row_ptr[row];
7 int row_end = row_ptr[row + 1];
8 for (int idx = row_start; idx < row_end;

idx++) {
9 int sparse_col = col_indices[idx];

10 double val = values[idx];
11 sum += val * B[sparse_col * n + col];
12 }
13 C[row * n + col] = sum;
14 }
15 }
16 extern "C" void exp3_opt_kernel(int m, int k, int

n, const int *d_row_ptr , const int *
d_col_indices , const double *d_values , const
double *d_B , double *d_C) {

17 cudaMemset(d_C , 0, m * n * sizeof(double));
18 dim3 blockDim (16, 16);
19 dim3 gridDim ((m + blockDim.x - 1) / blockDim.

x, (n + blockDim.y - 1) / blockDim.y);
20 exp3_kernel <<<gridDim , blockDim >>>(m, n,

d_row_ptr , d_col_indices , d_values , d_B ,
d_C);

21 cudaDeviceSynchronize ();
22 }

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

G
B

/s
)

Code Generation

Performance Progress - exp3

run 1
run 2

run 3
run 4

run 5

Best code: 666.78 GFlops/s
cuSparse: 397.58 GFlops/s
→ This is true (but possible as it is
specialized for the given problem)

29 / 30

Conclusion

Summary (our sysytem)

• Our toy system with gpt-oss-120b is pretty impressive

• Matrix multiplication is easy, right? Yes, but still difficult.

• Actual more complicated code? – will be more difficult

• There are tons of ideas for improvement

Generatie AI

• A Must-Have Technology for Fugaku NEXT

• From an academic research perspective, there is concern about whether we can catch up
with the rapid pace of technological evolution (and $ cost for GPUs)

• Model performance and commercial services are evolving so rapidly – our modest efforts
will soon be wasted ??? (though still meaningful as research)

30 / 30

