Automatic Generation of Numerical Codes

for GPUs Using LLMs%)

Daichi Mukunoki ! Shunichiro Hayashi 2 Tetsuya Hoshino ! Ryo Mikasa 3
Koki Morita 2 Takahiro Katagiri !

nformation Technology Center, Nagoya University, 2Graduate School of Informatics, Nagoya University,
3School of Informatics, Nagoya University

JHPCN Field Workshop
State-of-the-Art in Code Generative Al for High-Performance Computing
Dec. 5, 2025.

DThis research was supported by the Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
(JHPCN) and the High Performance Computing Infrastructure (HPCI) (Project ID: jh250015). It was also supported by JSPS
KAKENHI Grant Numbers JP23K11126 and JP24K02945.

1/30

HPC-GENIE

HPC-GENIE? — High-Performance Computing with
GEnerative Neural Intelligence for Execution

e A project for HPC code generation using LLMs at
the Information Technology Center, Nagoya
University

» Project leader: Takahiro Katagiri
» Sub-leader: Daichi Mukunoki
Key Missions
o Automatic HPC code optimization
e Fortran to GPU for Fugaku NEXT
e Technologies for local LLMs

e And more ...

“https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

2/30

https://www.hpc.itc.nagoya-u.ac.jp/menu/hpc_genie.html

BLAS Code Generation Using o4-mini & GPT-4.1%

Number of Correct Codes (in 10 Generations)

Non-Optimized Code | Optimized Code
Level | Routine | GPT-4.1 o4-mini | GPT-4.1 [o4-mini .
1 dasum 10 10 9 7 e OpenAl GPT-4.1 & o4-mini — entry-level
daxpy 10 10 10 10 _
daon 10 10 8 9 general-purpose LLMs
:jd:r':qzx 13 }8 § g e Generation with one simple prompt
drot 10 10 8 9 (for optimized code): “Implement
2 |dgemv 8 9 3 6 #ROUTINE# routine in BLAS in C
dger 10 10 7 7 . .
dsymv 8 8 0 > language. Thread parallelization, SIMD
dsyr2 8 9 2 7 vectorization, and cache blocking should
dtrmv 3 4 0 5 . "
dtrsv 3 9 0 4 be considered for speedup.
3 d 10 10 3 0
dfyez:: 4 8 3 3 e Given just a routine name, working code
dsyrk 3 10 0 1 can often be generated.
dsyr2k 3 10 0 0
dtrmm 0 1 0 0
dtrsm 0 0 0 0

2D. Mukunoki, S. Hayashi, T. Hoshino, T. Katagiri, “Performance Evaluation of General Purpose Large Language Models for
Basic Linear Algebra Subprograms Code Generation”, arXiv preprint arXiv:2507.04697, 2025.
3/30

DGEMM

CLW~NOU A WN

-

12
13
14
15
16
17
18
19
20

22
23
24
25

26
27
28
29

31

Reference Fortran code (part)

IF (NOTB) THEN
IF (NOTA) THEN

* Form C alpha*A*B + beta*C.
DO 90 J = 1,N (B)
DO 80 L = 1,K
TEMP = ALPHA*B(L,J)
DO 70 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L
)
70 CONTINUE
80 CONTINUE
90 CONTINUE
ELSE
x Form C alpha*A**T*B + beta*C
DO 120 J = 1,N
DO 110 I = 1,M
TEMP = ZERO
DO 100 L = 1,
TEMP = TEMP + A(L,I)*B(L,J)
100 CONTINUE

IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C
(1,1)
END IF
110 CONTINUE
120 CONTINUE

END IF
ELSE
IF (NOTA) THEN

N o=

-
cCo®~NO G

11
12
13
14

16
17

19
20
21

Generated C code (an example)

#include <stdio.h>

void GPTBLAS_dgemm(const char *transa, const char *
transb, const int *m, const int *n, const int *k,
const double *alpha, const double *a, const int *
lda, const double *b, const int *1db, const double

*beta, double *c, const int *1ldc)

printf (" [gptblas]");
int i, j, 1;
int nota = (xtransa
int notb = (xtransb N
for (j = 0; j < *n; j++) {
for (i = 0; i < *m; i++) {

double cij = (*beta) * cli + j * (x1ldc)];

double sum = 0.0;

for (1 = 0; 1 < xk; 1++) {

double a_val = nota ? ali + 1 * (*lda)

1 s all + i x (xlda)];
+

*transa
*transb

double b_val notb ? b[1l + j * (x1db)
1 : blj 1 % (*1db)]1;
sum += a_val * b_valj
¥
cli + j * (¥1dc)] = cij + (xalpha) * sum;

Code structure is not necessarily the same as

the reference Fortran code

4/30

Level-1 BLAS Performance (

Optimized C code from Optimized C code from
routine name only reference Fortran code
Routine Ref GPT-4.1 o4-mini GPT-4.1 o4-mini

dasum | 6.0 | 68.0 (11.4x) | 635 (10.7x) | 61.5 (10.3x) | 63.6 (10.7%)

daxpy 172 | 776 (4.5x) | 68.8 (4.0x) | 71.9 (4.2x) | 67.8 (3.9%)

ddot | 117 | 658 (5.6x) | 631 (5.4x) | 61.0 (5.2x) | 60.8 (5.2x)

idamax 7.1|638 (9.0x) | 65.1 (9.2x) | 60.3 (8.6x) | 62.8 (8.9x)

dnrm2 | 5.1 | 665 (12.9x) | 64.0 (125x) | 60.6 (11.8x) | 63.5 (12.4x)

drot 106 | 406 (3.8x) | 341 (3.2x) | 349 (33x) | 344 (3.3x)
)

drotm | 11.1 | 39.6 (3.6x) | 36.6 (3.3x) | 347 (3.1x) | 341 (3.1x)

e “Ref”: reference Fortran code (non-parallelized, non-optimized)
Xeon Gold 6230 (20 cores, Cascade Lake) X 2, 40 threads, gcc/gfortran 11.3.0 -march=native

Best result among the 10 generated codes

Blank entries indicate that no working code was generated

5/30

Level-2 BLAS Performance (GB/s, m=n=8129)

Optimized C code from
routine name only

Optimized C code from
reference Fortran code

Routine | Parameters Ref GPT-4.1 04-mini GPT-4.1 o4-mini
dgemv | trans=N 91 | 54 (06x) | 300 (33x) | 323 (35x) | 66 (0.7x)
trans=T 6.7 | 689 (10.4x) | 66.3 (10.0x) | 67.6 (10.2x) | 65.9 (9.9)
dger 185 | 463 (25x) | 649 (35x) | 664 (3.6x) | 642 (3.5%)
dsymv uplo=L 6.1 4.6 (0.8x) 43 (0.7x)
uplo=U 6.1 5.3 (0.9x) 47 (0.8x)
dsyr uplo=L 174 | 324 (1.9x) | 640 (3.7x) | 645 (3.7x) | 60.9 (3.5%)
uplo=U 17.5 61.5 (3.5x) | 64.4 (3.7x) | 58.9 (3.4x)
dsyr2 uplo=L 76 | 26.4 (3.5x) | 63.7 (8.3x) | 61.0 (8.0x) | 60.2 (7.9x)
uplo=U 155 | 29.0 (1.9x) | 59.6 (3.9x) | 62.1 (4.0x) | 58.6 (3.8x)
dtrmv uplo=L, trans=N, diag=N 7.6 7.3 (1.0x) 3.0 (0.4x) 3.0 (0.4x)
uplo=L, trans=N, diag=U 7.5 7.7 (1.0x) 2.9 (0.4x) 29 (0.4x)
uplo=L, trans=T, diag=N 6.5 56.9 (8.8x) 33 (0.5x) 3.2 (0.5x)
uplo=L, trans=T, diag=U 6.5 56.3 (8.7x) 33 (0.5x) 32 (0.5x)
uplo=U, trans=N, diag=N 9.0 7.6 (0.8x) 3.1 (0.3x) 31 (0.3x)
uplo=U, trans=N, diag=U 8.8 7.6 (0.9x) 31 (0.3x) 3.1 (0.4x)
uplo=U, trans=T, diag=N 6.1 56.7 (9.3x) 3.2 (0.5x) 3.2 (0.5x)
uplo=U, trans=T, diag=U 6.1 56.4 (9.3x) 3.2 (0.5x) 3.2 (0.5x)

e “Ref”: reference Fortran code (non-parallelized, non-optimized)
e Xeon Gold 6230 (20 cores, Cascade Lake) X 2, 40 threads, gcc/gfortran 11.3.0 -march=native
e Best result among the 10 generated codes
e Blank entries indicate that no working code was generated

6/30

Level-3 BLAS Performance (GFlops/s, m=n=k=2048)

Optimized C code from
routine name only

Optimized C code from
reference Fortran code

Routine | Parameters Ref GPT-4.1 o4-mini GPT-4.1 o4-mini
dgemm | transa=N, transb=N | 2.7 | 17.4 (6.5x) | 20.5 (7.7x) | 18.0 (6.8x) | 20.8 (7.8x)
transa=N, transb=T | 2.5 | 16.5 (6.5x) 16.1 (6.3x) | 20.7 (8.1x)
transa=T, transb=N | 1.8 | 16.8 (9.3x) 0.8 (0.5x) | 29.2 (16.1x) | 23.8 (13.1x)
transa=T, transb=T | 0.3 | 15.7 (46.3x) 35 (10.4x) | 203 (59.8x)
dsymm | side=L, uplo=L 36 | 136 (37x) | 17.2 (47x) | 199 (55x) | 223 (6.2x)
side=L, uplo=U 35 | 130 (40x) | 173 (49x) | 199 (5.7x) | 224 (6.4x)
side=R, uplo=L 27 | 134 (49x) | 16.4 (6.0x) | 19.0 (7.0x) | 21.2 (7.8x)
side=R, uplo=U 2.7 | 134 (49x) | 213 (7.8x) | 18.7 (6.8x) | 21.1 (7.7x)
dsyrk uplo=L, trans=N 1.0 2.9 (2.9x) | 18.2 (18.2x) | 16.6 (16.6x)
uplo=L, trans=T 19 | 201 (10.6x) | 21.8 (11.5x) | 27.7 (14.7x) | 23.0 (12.2x)
uplo=U, trans=N 2.3 3.8 (1.6x) | 16.5 (7.1x) | 16.5 (7.1x)
uplo=U, trans=T 19 | 365 (19.2x) | 21.0 (11.0x) | 347 (18.2x) | 225 (11.9x)
dsyr2k uplo=L, trans=N 1.8 31.0 (16.8x) | 18.4 (10.0x)
uplo=L, trans=T 3.1 | 429 (13.8x) 29.6 (9.5x) | 23.1 (7.4x)
uplo=U, trans=N 31 30.2 (9.9x) | 18.1 (5.9x)
uplo=U, trans=T 3.1 | 432 (13.7x) 27.4 (8.7x) | 23.0 (7.3x)

“Ref”: reference Fortran code (non-parallelized, non-optimized)
Xeon Gold 6230 (20 cores, Cascade Lake) X 2, 40 threads, gcc/gfortran 11.3.0 -march=native

Best result among the 10 generated codes
Blank entries indicate that no working code was generated

7/30

Optimized Code / Summary

Performance optimization is very poor...

OpenMP is applied, but not always with the optimal strategy
SIMD is often applied with #pragma omp simd or AVX2/AVX-512 intrinsics
» Code branching is implemented with macros (__AVX__, __AVX512F_.)

Block size is often arbitrarily set to 64 (some cases use 128 or 256)

Difficult to generate sufficiently optimized code in one shot from a single simple prompt

e GEMM is not necessarily easy

8/30

Auto-Tuning System Using Local LLMs on Consumer-Grade PCs

Why Local LLMs? — Issues with Commercial Services
e High costs: Cloud-based API usage fees or subscription charges
e Black box: Closed source, making custom improvements and verification difficult for R&D
e Security concerns: Code and research data processed on external servers

Objective 1: Building a Lightweight System Runnable on Consumer-Grade Local PCs
e High-end open-source models are available but require large-scale computing resources

e For research purpose: to examine techniques to compensate for limited model performance

Objective 2: Specializing in Performance Optimization of HPC Code
o HPC code development is more challenging than general code development
o Performance optimization is not just about “making it work”

e An iterative code improvement process (implement — evaluate — modify) is required

9/30

Expectations for Local LLMs Runnable on Consumer-Grade PCs

Models that fit on a single consumer GPU trail the absolute frontier by less Z EPOCHAI
than a year.

GPQA-Diamond accuracy

100% — Frontier models

W Top-1 models
- [Other models

Grok 4

80% — Open models on a
consumer GPU

M Top-1 models
[Other models

o1-mini (high);
60%

GPTZ40 ©
@
7'months

Phi 3

@ Mistral 7B
RTX 4090 Era RTX 5090 Era
(< 28Bmodels) (< 40B models)

o

T T T T T T T
July2023 Oct. 2023 Jan.2024 Apr.2024 July2024 Oct.2024 Jan.2025 Apr.2025 July 2025
Release date

CC-BY epoch.ai

3)
3Source: https://epoch.ai/data-insights/consumer-gpu-model-gap

10/30

Our Prototype System

Simple Automatic Code Optimization System for Local PCs
e This is more like a toy, still just practice ...
e Multi-agent system to compensate for limited model performance

e Automatic iterative prompt generation for autonomous optimization (non-stop without
human intervention)

e Using gpt-oss-120b (for now)

OpenAl gpt-oss-120b* (August 2025)

e Open model with approximately 120 billion parameters (about 80 GB needed)
Comparable performance to o4-mini (recall the results of BLAS generation)
e Can run on AMD Ryzen Al Max+ 395 with 128GB unified memory®

PC price: approximately $2,000 — Can be considered “runnable on consumer-grade PCs”

4)ht:tps ://github.com/openai/gpt-oss

Shttps://www.and.com/en/products/processors/laptop/ryzen/ai-300-series/amd-ryzen-ai-max-plus-395.html
11/30

https://github.com/openai/gpt-oss
https://www.amd.com/en/products/processors/laptop/ryzen/ai-300-series/amd-ryzen-ai-max-plus-395.html

System Workflow: Iterative Optimization Phase

o Initial prompt: “Optimize this code for the target processor” (actually more complicated)

1.

Programmer (PG) 1 — PG 5: Code generation

» Each PG independently creates code
Testing and benchmarking each code

» Generated code is compiled and verified /evaluated using test programs
Debugger (DG): Debugging

» DG analyzes the cause when errors occur and PG modifies the code (up to 2 retries)
PG 1 - PG 5: Code analysis

» Analyzes which optimizations contributed to performance improvement or degradation
Project Manager (PM): Optimization strategy planning for next iteration

» Collects analysis results from PGs and generates different prompts for each PG
» Adopts the fastest code as the base for the next generation

e Repeat from step 1 until maximum iterations or time limit is reached

12/30

System Specification

e The user does not give any target-code-specific instructions to the system — any prompts
are given; the system automatically generates iterative prompts from the initial prompt to
proceed with optimization

o Optimization target is one file (computation kernel in our evaluation)

o Makefile, compiler options, execution way cannot be changed

e Benchmark and verification program is given by user (system does not edit this)

e Using gpt-oss-120b (temperature = 1.5 for high randomness) via Cerebras inference API

13/30

Performance Evaluation Environment

Evaluation Environment
o Xeon Gold 6230 (20 cores) x 2 (2688 GFlops/s in FP64, 281.5 GB/s)

e gcc 11.3.0, -03 -march=native -fopenmp -1lm -lpthread (system cannot change)

e MKL links and paths configured for verification and performance comparison (practically
MKL can be used in the optimization code)

Conditions

e Strings that could reveal code content are not passed to the LLM

e Use of MKL is prohibited in optimization (but violated sometimes...)

14 /30

Test 1: DGEMM

Performance Progress - DGEMM

1600

Input Code A A A
1400 - - DU T R BNl I

1 | void expl_opt(int N, @ [

2 double *A, 2 1200 ,'

3 double *B, o 1

4 double *C) { 5 1000 i /

5 for (int i = 0; i < N; i++) { = 800 ,'

6 for (imt j = 05 j < N; j++) { 2 ; A 7

7 double sum = 0.0; S 600 |t v

8 for (int k = 0; k < N; k++) { 3 i

9 sum += A[i*N+k] * B[k*N+j]; j:._' 400 i

10 o ERR I

1 Cli*N+j] = sum; 200 [gatet i .

12 s X

13 } 0

14 ¥ 01234567 8 91011121314151617181920

Code Generation

runl ——

run 2 =--x---

Attention!: how to read the figure
e 5 experiments (run 1 — 5) were performed with the same input and under the same
conditions, due to random nature of LLM outputs
e The horizontal axis represents the number of iterations (code generations)
e Each iteration generates 5 codes, and the performance of the fastest code is plotted

15/30

Test 1: DGEMM

Performance Progress - DGEMM

Input Code N EBESESSRESREE Fug
1400 R :
1 id expl_opt(int N, @
O A R TR A, \2 1200 i
3 double *B, o !
2 double *C3 { w1000 /
5 for (int i = 0; i < N; i++) { = 800 1
6 for (int j = 0; j < N; j++) { 3 H A
7 double sum = 0.0; S 600 ! i
8 for (int k = 0; k < N; k++) { 3 ,'
9 sum += A[i*N+k] * B[kxN+jl; < 400
10 [= & ' e
11 CLi*N+j] = sum; 200 P8 e g PO TE et e
12 } e
13 ¥ 0
14 } 012345678 91011121314151617181920
Code Generation
run 1 —— ————
run 2 ---x---
e Performance evaluated with n = 1024 square matrices (small for target)
e Fastest: 1537.06 GFlops/s in run 5, but this called MKL's dgemm
— LLM recognized this code as a mat-mul (but use of BLAS was prohibited in prompt)
o Full-scratch fastest: 1173.42 GFlops/s at Gen. 18 of run 1

e Large variation in results across runs

16 /30

Fastest Generated DGEMM Code (1/3)

static

inline void pack_B_panel(const double *B_src,

double *B_pack, int N, int kp, int jp, int k_max,
int blk_width)

for

(int k = kp; k < k_max; ++k) {

const double *src = &B_srcl[k * N + jpl;

double *dst = &B_pack[(k - kp) * blk_widthl;

int j = 0;

_mm_prefetch((const char *)src, MM HINT_TO);

for (; j + 8 <= blk_width; j +=
“m512d v = _mm512_loadu pd(&src[]]),
_mm512_storeu_pd (%dst [j],

for (; j < blk_width; ++j) { dst[j] = srcl[jl; }

_mm_sfence () ;

void e

con

omp_set_num_threads (om

#pr
for

xpl_opt(int N, double *restrict A, double *
{

restrict B, double *restrict C)

st int BLOCK =
et_max_threads ())
agma omp parallel for collapse(2) sehedule (static)
%int ii = 0; ii < N 11 += BLOCK)
for (int jj = O3 <N jjo+= BLGCK) {
int i_max (11 + BLUCK >N) ? N ii + BLOCK;
int jomax = (jj + BLOCK > M) ? N : jj + BLOCK;
int blk_width j
int vec_widt glk dth & ~31;
double C_local [BL(]CK * BLOCK] __attribute__ ((
aligned (64)));
double *C_local_aligned = (double *)
_builtin_assume _aligned(C_local, 64);
for (imt i = 0; i < BLOCK * BLOCK; ++1)
C_local_aligned[i] = 0.0;
for (int kk = 0; kk < N; kk += BLUCK) {
int k Egg = (kk + BLOCK > N) 7 :

double B_pack_local[BLOCK * BLOCK]
__attribute__((aligned (64)));
pack_B_panel (B, B_pack_local, N, kk, jj,
k_max, blk_width);
for (int i = ii; i + 3 < i_max; i += 4) {
const double *a_rowd = ZA[(i + 0) x N +

34
35
36
37
38
39
40

41
42

43
44
45
46
47
48
49
50
52

53

54
55

const double *a_rowl = &A[(i + 1) * N +
const double *a_row2 = &AL(i + 2) * N +
const double *a_rowd = &A[(i + 3) * N +

doublf *c_locO = &C_local_aligned[(i - ii
*

BLOCK];

double *c_locl = &C_local_aligned[(i - ii

+ 1) * BLOCKI;

double *c_loc2 = &C local_aligned [(i - ii
2) * BLOCK

double ¥c_loc3 = &C_local_aligned[(i - ii
3) * BLOCK];

for (]nt j = < vec_width; j +=

0; i 6) {
-m512d 00" =" _mn512 loadu’pd (ke 1orot

i 01)
m512d c01 _mm512_loadu_pd (&c_locO[

i 81);

m512d c10 = _mm512_loadu_pd (&c_loc1[
] 0

m512d c11l = _mm512_loadu_pd (&c_loc1[

i 1)
m512d c20 = _mm512_loadu_pd(&c_loc2[

]

mSiZd c21 _mm512_loadu_pd (&c_loc2[
]

-m512d c30 _mm512_loadu_pd (&c_loc3[

01);

m51J2d 03]1>= _mm512_loadu_pd (&c_loc3[
81);

for (1nt k = kk; k < k max, ++k) {
const int k_ off = k kk;
_m512d b0 = _mm512_ load_ (

B pack local [k_off * blk_width
¥ 3 + 01)

__m512d b1l = ‘mn512_load _pd (&
B pack local [k_off * blk_width
+ 3 + 81);

__m512d a0 = _mm512_seti_pd(a_row0[

s
__m512d a1]= _mm512_set1_pd(a_rowll[
k_)

17/30

Fastest Generated DGEMM Code (2/3)

56
57
58

59

60

61

62
63

64
65
66
67
68
69
70
71

73
74

m512d a2 = _mm512_setl_pd(a_row2[
_ m512d as = _mm512_seti_pd(a_row3[
k_off]l);
c00 = _mm512_fmadd_pd (a0, b0, c00);
c01 = _mm512 fmadd pd(aO bl,
c01);
c10 = _mm512_fmadd_pd(al, b0, c10);
c11 = _mm512 fmadd_pd (a1, bi,
cl1);
c20 = mm512 fmadd_pd (a2, b0, c20);
¢21 = _mm512 fmadd pd(a2 bl,
c21);
¢30 = _mm512_fmadd _pd(a3, b0, c30);
c31)= “mm512 fmadd_pd (a3, bi,
c31);

}
_mmSlZ_storeu_pd(kc_locO[j + 0], c00);
n512_storeu_pd(&c_locO[j + 81,

1)
_mm512. storeu _pd(&c_loci[j + 0], c10);
m512_storeu_pd(&c loci[j + 8],

1)
_mm512. storeu _pd(&c_loc2[j + 0], c20);
m512_storeu_pd(&c_loc2[j + 8],

1)
_mm512 scoreu _pd(&c_loc3[j + 0], c30);
m512_storeu_pd (&c_loc3[j + 8],
c31)
¥
for (int j = vec_width; j < blk_width; ++
i) {
double s0 = c_locO[jl; double s1 =

c_loci[§T;
double s2 = ¢_loc2[jl; double s3 =

c_loc3[jl;
for (int k = kk; k < k_max; ++k) {
const int k_off = k - kk;

double b = B _pack_local[k_off *
blk_width + j];

S0 += a_row0[k_off] * b; s1 +=
a_rowl[k_off] * b;

75

76
v

78
80

81
82

83
84

85
87

s2 += a_row2[k_off] * b; s3 +=

c_locO[
[J]J

a_row3[k_off] * b

1 = s0; c_loci[j]l = si; c_loc2
= s2; c_loc3[j] = s3;

for (int i = i_max - ((i_max - ii) % 4); i <

i_max; +

+i)

const double *a_ptr = &A[i * N + kkl;
double *c_loc = &C_local_aligned[(i - ii)

* BLO

for (int j
- m512d
for (1nt
const

CK1;
= 0; j < vec_width; j += 8) {
c_vec'= _mm512_loadu_pd (zc_loc

k—kk k < k_max; ++k) {
int k_off = k H

__m512d b_vec = _mmSiZ_load_pd(&

_mm512_s

for (inmt j

B_pack_local[k_off * blk_width
+ 3]
2d ‘a_vec = _mm512_setl_pd(
a_ptrlk_offl);
= _nm512_fmadd_pd(a_vec,
b_vec, c_vec);
toreu_pd (&c_loc[jl, c_vec);

= vec_width; j < blk_width; ++

J
double sum = ¢ 105[]].

for (int
const

k = kk; k _max; ++k) {
int k_off = k - kk;

sum += a_ptr[k_off] x B pack locall

}
c_loc[j]
}

for (int i = ii;
double *c_ptr
double *c_loc

BLOCK];

k_off * blk_width + jl;

= sum;

i 3il;
_local a11gned[(1 - ii) x

18/30

Fastest Generated DGEMM Code (3/3)

106 c_ptr = (doubl)e *) __builtin_assume_aligned(
- s 64);

107 c_loc = (doubl)e *) __builtin_assume_aligned(

c, 64);

108 int j = 0;

109 for (; j < vec_width; j += 8) {

110 __m512d tmp = _mm512_loadu_pd(&c_loc[jl);

11; N _mm512_storeu_pd (&c_ptr[jl, tmp);

11

113 for (5 j <_blk_width; ++j) {

114 c_ptr[jl = c_loc[jl;

115 ¥

116 }

117 }

118 }

119 }

*Due to space limitations, auto-inserted comments, blank lines,
and header includes were removed from the actual generated
code, and indentation/line breaks were partially modified.

19/30

Test 2: DTRSM

Input Code
void exp2_opt(int N,
double %A, double xB,
double *X, double alpha) {
for (int i = 0; i < Nj; i++) {
for (int j = 0; j < N; j++) {
X[i*N+j] = alpha * B[i*N+j];
}
for (int j = 0; j < N; j++) {
for (int i = 0; i < N; i++) {
for (int k = 0; k < i; k++) {
X[i*N+j] -= A[i*N+k]*X[k*N+j];

X[i*N+3j] /= A[ixN+il;

Throughput (GFlops/s)

160
140
120
100
80
60
40
20

Performance Progress - DTRSM

e
e \/ R o’

0 o
012345678 91011121314151617181920

Code Generation

runl —+— run3 --omee- run5 - -m-—
[UN 2 ===X=== [UN4 oo

e Solving equations with triangular matrix coefficients (lower triangular, n = 1024); more
complex data dependencies than DGEMM; high optimization difficulty

e Fastest: 146.33 GFlops/s at Gen.19 of run 4 (MKL: 305.74 GFlops/s, 48% of MKL)
o Not observed in this experiment, but cases using MKL were seen during test runs

20/30

Fastest Generated DTRSM Code (part)

#define COL_BLOCK 8
void exp2_opt(int N, double * restrict A, double *

restrict
double * restrict X, double alpha) {
double inv_diag[N] __attribute__((aligned(64)));
double *trans_X = (double*)aligned_alloc(64, (size_t)
* N * sizeof (double));

#pragma omp parallel for schedule(static)
for %1nt i°="0; i < N; ++i)

double *xrow = X + i * N;

double xbrow = B + i * N;

int j

__m512d valpha = _mm512_setl_pd(alpha);

for (; j <= N-8; j += 8

_m512d v = _mm512_loadu_pd(brow + j);
v = _mm512_mul_pd (v, valpha);
_mm512_storeu_pd(xrow + j, v);

for (; j N; ++J) xrow[J] = alpha * brow[jl;
N inv dlag[l] = 1.0 / Ali iﬁ;
const int BS = 64;
#pragma omp parallel for collapse(2) schedule(static)
for %1nt i0 = 0; i0 < N; i0 += BS) {
for (int jO = 0; jO < N; jO += BS)
int i_max i0 N i H H
int ax = jO + BS < N 7 jO + BS : N;
for (int i i0; i < i_max; ++i) {
double *xrow X + i H
for (int j = jO; j < j_max; ++j) {
trans_X[j * N + i] = xrow[ji

¥
3
2pragma omp parallel

#pragma omp for schedule(runtime) nowait
oS0 Gt jb = 0; jb < N; jb += COL_BLOCK) {
int j_end = Ieb + CDL BLOCK < N) ? jb +
COL_BLOC
#pragma omp task depend(lnout trans_X[jb * N])

for (int j = jb; j < j_end; ++j) {

double *xcol = trans_X + j * N;
#pragma omp simd
for (int i = 0; i < Nj ++i) {

const double *arow = A +
__m512d vsum = mm512 setzero pd(),
int limit = i &
if (limit >= 8) {

_mm_prefetch(arow + 8, _MM_HINT_TO)

_mm_prefetch(xcol + 8, _MM_HINT_TO)

__m512d a_prev = _mm512_loadu_pd(
arow) ;

__m512d x_prev = _mm512_loadu_pd(
xcol);

int k =

for (; k < limit; k += 8) {
_mm_prefetch(arow + k + 8,

_MM_HINT_TO);
_mm_prefetch(xcol + k + 8,
_MM_HINT_TO);
__m512d a_cur = _mm512_loadu_pd(
arow + k);
__m512d x_ cur = _mm512_loadu_pd(
xcol + B
vsum = mm512 fnadd_pd (a_prev,
rev, vsum);
N a_prev = a_cur; X_prev = x_cur;
vsum = _mm512_fmadd_pd(a_prev,
N x_prev, vsum);
int rem = i - limit;

i
if (rem) {
_mm_prefetch(arow + limit + 8,

_MM_HINT_TO);

_mm_prefetch(xcol + limit + 8,
_MM_HINT_TO);

__mmask8 m = (1U << rem) - 1U;

__m512d a = _mm512 maskz loadu_pd(m
, arow + limit

--m512d x = _mm512 maskz loadu_pd (m
, xcol + limit);

vsum = _mm512_fmadd pd(a, X, vsum);

21/30

Test 3: DCSRMM

Input Code Performance Progress - DCSRMM
. . . . 80
1 void exp3_opt(int m, int k, int n, RN y
2 const int *row_ptr, Y "
3 const int *col_indices,
4 const double *values, —_
5 const double *B, double #*C) { g
6 memset (C, 0, m*n*sizeof (double)); 1)
7 for (int i = 0; i < m; i++) { =
8 int row_start = row_ptrl[il; a s
9 int row_end = row_ptr[i + 1]; S L /
10 for (int idx=row_start; 3 H
11 idx<row_end; idx++) { £ i l
12 int col = col_indices[idx]; = :
13 double val = values[idx]; " I :
14 for (int j = 0; j < mn; j++) { i il :
15 Cli*n+j] += val*B[col*n+j]; ——y Y :'_‘.f' L O
16 0
17 b 01234567 891011121314151617181920
18 } i
1 |3 Code Generation
runl —— run3 % run 5 —-m--
run 2 ===x=== run 4 cog@e

e Sparse-dense mat-mul in CSR format (gridgena.mtx: n = 48962, nnz = 512084, RHS
width m = 128); irregular memory access; depends on sparse structure

o Fastest: 78.45 GB/s at Gen. 15 of run 5 (MKL: 86.88 GB/s, 90% of MKL)

o Attempted FP16 (failed), CSC and ELLPACK format changes (failed) — sparse matrix
structure was recognized

22/30

Fastest Generated DCSRMM Code

1 | #define UNROLL.FACTOR 4 - v+
3| hdetine URROLE 40 “mslggcbdl)mm512 loadu_pd(b_ptr + j
3 | #define UNRGLL_STEP (UNROLL_FACTOR * VEC_WIDTH) a1 sl T oadu pd(c_row + § +
4 | void exp3_opt(int m, int k, int n, S VEC_WIDTH) & - -
5 const int *__restrict row_ptr, 42 __m512d b2 = _mm512 loadu_pd(b_ptr + j +
g const int *__restrict col_indices, 2 % VEC_WIDTH);
const doublé *__restrict values, 2
8 const double *__restrict B, 43 ——’“5132‘1* C‘?EE wI‘"];"Tsl_lif loadu_pd(c_row + j +
H ; double ¥._restrict C) { 4 __m512d b3 = _mm512 loadu_pd(b_ptr + j +
10 int block_n = 64] 39, 05ee rmn.
11 const char *env_n = getenv("BLOCK_N"); 45 mn512_fmadd_pd (val_v b0 0);
12 if (env_ n)}{ int v = atoi(env_n); if (v > 0) block.n 8 “mmbi2 fmadd gd(valivzg’ bels 21){
13 int block.m = 128; 47 “mm512_fmadd_pd(val_vec, b2, c2);
14 const char *env_m = getenv("BLOCK_M"); 48 c3 = _mm512_fmadd_pd(val_vec, b3, c3);
15 if (env_m) { int v = atoi(env_m); if (v > 0) block_m ‘5‘8 ::;gig :zgizﬁ gggz ll:g: : g . 3%0 WIDTH
16 int block_ shift = ci); i
17 while ((1 << block_ shlft) < block_n) ++block_shift; 51 _mm512_storeu_pd(c_row + j + 2 *
18 #pragma omp parallel for schedule(static) VEC_WIDTH, c2); .
19 for %int i0 = 0; i0 < m; i0 += block_m) { 52 _mm512_storeu_pd(c_row + j + 3 *
20 int i1 = i0 + block_m; VEC_WIDTH, c3);
21 if (i1 > m) il = m; gi b . _ .
3 for Gint 3= 30 47 11y) £ B int satlrem T m o i
* = + t * n; ail_ =
24 int row start - row pf;? ; l] n 56 for (ing™e - 0; 't <tail_vec: t += VEC_WIDTH
25 int row_end row_ptr[i + 1]; _ .
26 for (int idx = row_start; idx < row_end; ++idx) 57 --m512d c_vec = _mm512_loadu_pd(c_row + j
27 int col = col md;ce[s[u]ix]; 58 --m512d bovec = _mm512_loadu_pd (b_ptr + j
28 double val = values[idx ;
29 __m512d val vec = _mm512 setl_pd(val); 59 c_vec = _mm512_fmadd_pd(val_vec, b_vec,
30 int block_id = col >> block_shift; c_vec); i
31 int col_off = col & (block n - 1); 60 -mm512_storeu_pd(c_row + j + t, c_vec);
32 const double *b_ptr = B 61 b X . i
33 ((size_t)block_id * block n + (size_t) g% lrflt(ggﬂ_zizﬁf{tall_rem - tail_vec;
1 0ff) * n; i -
34 int j = %°~ otf) i 64 “mmasks mask = (1U << tail_elem) - 1;
35 int unroll_limit = n - (n % UNROLL_STEP); 65 m512d c_mask = _mm512 maskz loadu _pd(
36 for (; j < unroll_limit; j += UNROLL_STEP) { mask, c_row + j + fail_
37 __m512d c0 = _mm512_loadu_pd(c_row + j); 66 _m512d b_mask = _mm512 maskz lcadu _pd(
38 m512d b0 = _mm512_loadu_pd(b_ptr + j); mask, b_ptr + j + tail_vec);
39 “"m512d c1 = _mm512_loadu_pd(c_row + j + 67 c_mask = _mm512_fmadd_pd(val_vec, b_mask,
VEC_WIDTH) ; c_mask);

23/30

Test 1: DGEMM (CUDA)

Performance Progress - exp1
Input Code 4000
1 __global__ void expl_kernel(int N, const
double *A, const double *B, double *C) { 3500
2 int row = blockIdx.y * blockDim.y + w /\
threadldx.y; 2 A
3 int col = blockIdx.x * blockDim.x + S 3000 - g
threadIdx.x; % u
4 if (row < N && col < N) { Z 2500 |-
5 double sum = 0.0; 3 g
6 for (int k = 0; k < N; k++) { g]
7 sum += A[row * N + k] * B[k * N + 3
coll; = i
8 } ’-S 'I "\
9 Clrow * N + coll = sum; !
10
o})) 1000
12 extern "C" void expl_opt_kernel(int N, const 123456 7 8 91011121314151617181920
double *d_A, const double *d_B, double x* .
a_c) { Code Generation
13 dim3 blockDim (16, 16); —_— . ————
14 dim3 gridDim((N + blockDim.x - 1) / :32% R :ﬂﬂi S— uns -
blockDim.x, (N + blockDim.y - 1) /
blockDim.y);
15 expl_kernel <<<)gridDim, blockDim>>>(N, d_A Target: Tesla V100 (one GPU, 7000 GFlOpS/S
, d_B, d_C); .
16 cudaDeviceSynchronize () ; n FP64)
17 |}
Best code: 3628.29 GFlops/s

cuBLAS: 6168.09 GFlops/s

24/30

Fastest Generated DGEMM Code

=
SO WNOUI AwWNR

CUDA) (1/3)

#include <cuda_runtime.h>
#include <stdlib.h

extern "C" cudaError_t cudaGetDeviceProperties_v2
cudaDeviceProp *prop, int device)

return cudaGetDeviceProperties (prop, device);

extern "C" long __isoc23_strtol(const char *mnptr,
**endptr , int base)
return strtol (nptr, endptr, base);

#define TIL. // x3232 s1n

E 32
#define K_UNROLL 32

// Fmryo-nzon
#define UNROLL_K(iter)

do { |
diuble a0 = As[calc][threadIdx.y*2 + 0][i
double al\= As[calc][threadIdx.y*2 + 1][i
double b0\= Bs[calc][iter][threadIdx.x*2
double b1\= Bs[calc][iter] [threadIdx.x*2
regC[0]1[0] += a0 * bO;
regCl01[1] += a0 * bi; '
regC[1]1[0] += al * bO; \
regC[1][1] += al * bil; \

} while (0) |

__globagggt;fég exfl kernel (int N, const double *

const double *__restr

double *__restrict__

(

char

terl;
ter]l;
+ 013
+ 115

ict__ B
c) {

double regC[2]1[2] = {{0.0, 0.0},
{0.0, 0.0}}; /7
x22 wn

double As[2] [TILE][TILE];
double Bs[2] [TILE][TILE];

1) / TILE;
int baseRow = blockIdx.y * TILE + threadIdx.y * 2;

__shared__
shared__

int numTiles = (N + TILE -

int baseCol = blockIdx.x * TILE + threadIdx.x * 2;
// 2 mey
// ---- 1st st load (ping = 0) ----
int ping = 0;
for (int dy = 0; dy < 2;
int aRow baseRow + dy;
int aCol = 0 % TILE + threadldx.x * 2;
doubled4 a_pair = *((doubledx) (A + aRow * N +
aCol));
double a0 = a_pair.x;
double al = a_pair
As[P1ng][threadIdx

++dy) {
d

Y

y * 2 + dyl[threadIdx.x * 2]

As[p1ng£[thread1dx y * 2 + dyl[threadIdx.x * 2 +
al;

for (int dy = 0; dy < 2; ++dy) {
+ TILE + threadldx.y * 2 + dy;

int bRow

int bCol = baseColj

double4 b_pair = *((double4#) (B + bRow * N +
5CoLT) s

double b0 = b_pair.x;

double bl

b_pair.y;
Bs[ping] [threadldx.y * 2 + dyl[threadldx.x 2]
Bs[Plng][threadIdxAy * 2 + dyl[threadIdx.x * 2 +
11 = bi;

¥
__syncthreads () ;
// mmscna-k
5
++t) {

for (int t = 0; t < numTiles;

25 /30

Fastest Generated DGEMM Code (CUDA) (2/3)

I . . !
65 | int calc = ping;) I 92 doubled b_pair = *((double4*) (B + bRow *
| - // mummcemss | N + bCol))
66 e 93 double b0 = b pAIr x;
67 /) === (calc syz7) - 94 double bl = b_pair.y;
68 ONROLL K(O) (U)NRCILL K(1); UNROLL_K(2); 95 Bs[Ping][th]readIdx go* 2 + dyl[threadIdx
UN 3 5
69 UNRDLL_K(4); UNROLL_K(5); UNROLL_K(6); 96 BSEP1ng][thread]Idxg * 2 + dyl[threadIdx
UNROLL_K (7) ; = b1;
70 UNROLL_K(8); UNROLL_K(9); UNROLL_K(10); 97 }
UNROLL_K ; 98
71 UNROLL_K (12) ; UNROLL_K(13); UNROLL_K (14); 99 __syncthreads) ;
NROLL_K (15) ; // RRICWRS
72 UNROLL_K (16) ; UNROLL_K(17); UNROLL_K (18); 100 }
UNROLL _K (H 101
73 UNROLL K(20), UNROLL_K (21) ; UNROLL_K(22); 102 /) ---- wamL ---
OLL 23); 103 ClbaseRow * N baseCol] = regC
74 UNRCILL K(24), UNROLL_K (25) ; UNROLL_K(26); 0
UNROLL _K (104 ClbaseRow * N + baseCol + 1] = regC
75 UNROLL_K (28) ; UNROLL_K(29); UNROLL_K (30); 5
UNROLL_K (31) ; 105 C[(baseRow + 1) * N + baseCol] = regC
76 1 5
77 // rsane prefetch (ping rvs7) —TTBEOBARRFYT 106 Cl(baseRow + 1) * N + baseCol + 1] = regC
78 ping = 1 ng; [11011;
// KvzreRs 107 |}
79 if (t + 1 < numTiles) { 108
80 for (int dy = 0; dy < 2; ++dy) { 109 | extern "C" void expl_opt_kernel(int N, const double *d_A
81 int aRow = baseRow + dy; 110 , conmst double *d B,
82 int aCol = (t + 1) x TILE + threadldx.x o . qoeubte, t%
83 d b14 = *((doubledx) (A + aRow * 111 if (N % 8 !=0
oubLe a ~Pedx, o *((doubled) (A + akow 112 int Npad = ((N + 7) / 8) = 8;
84 double aO = a panmx; 113 size_t pitch_pad = (size_t)Npad * sizeof (double)
85 double al = a_pair oo b X) .
114 size_t pitch_orig = (size_t)N #* sizeof (double);
86 As[p1ng][thread1dx y '+ 2 + dyllthreadldx 115 Sezegt l:d ipad —gnullptr, T Bpad ZChuliptr,
d_Cpad = nullptr;
87 As[pmg] [thread]ldx y ¥ 2+ dy] [threadIdx 116 cudalalloc (4d_Apad, pitch_pad * Npad);
88 3} 117 cudaMalloc E&d Bpad, pitch_pad * Npad;;
i -0 118 cudaMalloc (&d_Cpad, pitch_pad * Npad):
& for (ime dy = %,.% 5% };L%)+{thread1dx y 119 cudaMenset (d_Apad, 0, pitch_pad * Npad);
« 2 + dy; 120 cudaMenset (d_Bpad, 0, pitch_pad * Npad);
91 int bCol = baseCol; 121 cudaMemset (d_Cpad, 0, pitch_pad * Npad);

26 /30

Fastest Generated DGEMM Code (CUDA) (2/3)

122 cudaMemcpyZD(d Apad pitch_pad, d_A, pitch_orig,
123 ch_orig, N,
cudaMemcpyDev1ceToDev1ce)

124 cudaMemcpy2D (d_Bpad, pitch_pad, d_B, pitch_orig,

125 pitch_orig, N,

196 CudaMemcpyDeviceToDevice) ;

127 dim3 blockDim(TILE / 2, TILE / 2);

128 dim3 gridDim((Npad + TILE - 1) / TILE, (Npad +
TILE - 1) TILE);

129 expl_kernel<<<gridDim, blockDim>>>(Npad, d_Apad,
d_Bpad, d_Cpad);

}g(l) cudaDeviceSynchronize () ;

132 cudaMemcpy2D(d_C, pitch_orig, d_Cpad, pitch_pad,

133 pitchiorig,

13 CudaMemcpyDeviceToDevice) ;

135 cudaFree (d_Apad);

136 cudaFree (d_Bpad) ;

137 cudaFree (d_Cpad) ;

138 return;

139 }

140

141 dim3 blockDim(TILE / 2, TILE / 2);

// x1616 =Lk

142 dim3 grllem((N + TILE - 1) / TILE, (N + TILE - 1) /
E);

143 expl_ kerne1<<<gr1dD1m, blockDim>>>(N, d_A, d_B, d_C)

144 cudaDevlceSynchronlze();

145 }

146

147 #undef K_UNROLL

148 #undef UNROLL_K

27/30

Test 2: DTRSM (CUDA)

17
18
19
20

21
22
23
24
25

26
27
28

__global__ void kernell(int N, const double *B,
double *X, double alpha) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N = N)
X[idx] = alpha * B[idx];

__global__ void kernel2(int N, int row, const double
*A, double *X) {
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col < N) {
double sum = 0.0;
for (int k = 0; k < row; k++) {
sum += A[row * N + k] * X[k *x N + coll;

X[row * N + coll = (X[row * N + col]l - sum)
/ Alrow * N + rowl;
s
}
extern "C" void exp2_opt_kernel(int N, const double
*d_A, const double *d_B, double *d_X, double
alpha) {
int total = N * N;
int threads = 256;
int blocks = (total + threads - 1) / threads;
kernell<<<blocks, threads>>>(N, d_B, d_X, alpha)

5
cudaDeviceSynchronize () ;
threads = 256;
blocks = (N + threads - 1) / threads;
for (int i = 0; i < N; i++) {
kernel2<<<blocks, threads>>>(N, i, d_A, d_X)

cudaDeviceSynchronize () ;

Throughput (GFlops/s)

Performance Progress - exp2
160

140

120

100

80 B B
60 -

g

40 g o

20

0 1
012345678 91011121314151617181920
Code Generation

runl —+— run3 --omee-
run 2 ===x--- run 4 coomee

Best code: 151.59 GFlops/s
cuBLAS: 1278.75 GFlops/s

28/30

Test 3: DCSRMM (CUDA)

w

o~ oA

11
12
13
14
15
16

17
18
19

20

21
22

void exp3_kernel(int m, int n, const
int *row_ptr, const int *col_indices, const
double *values, const double *B, double *C) {
int row = blockIdx.x * blockDim.x + threadIdx

__global__

LX;
int col = blockIdx.y * blockDim.y + threadIdx

Y
if (row < m &% col < n) {
double sum = 0.0;
int row_start = row_ptr[rowl;
int row_end = row_ptr[row + 1];
for (int idx = row_start; idx < row_end;
idx++) {
int sparse_col = col_indices[idx];
double val = values[idx];
sum += val * B[sparse_col * n + coll;
}
C[row * n + col]l = sum;
}
}
extern "C" void exp3_opt_kernel(int m, int k, int
n, const int *d_row_ptr, const int *
d_col_indices, const double *d_values,
double *d_B, double *d_C) {
cudaMemset(d_C, O, m * n * sizeof (double));
dim3 blockDim (16, 16);
dim3 gridDim((m + blockDim.x - 1) / blockDim.
x, (n + blockDim.y - 1) / blockDim.y);
exp3_kernel<<<gridDim, blockDim>>>(m, n,
d_row_ptr, d_col_indices, d_values, d_B,
d_C);
cudaDeviceSynchronize () ;

const

Throughput (GB/s)

700

600

Performance Progress - exp3

-

T
[
i
i
I
¥
i
H
i
i
¥
1

0
01234567 8 91011121314151617181920

Code Generation

run3 .- run5 -

run 4 coomes

runl ——
run 2 ==-x---

Best code: 666.78 GFlops/s
cuSparse: 397.58 GFlops/s

— This is true (but possible as it is
specialized for the given problem)

29/30

Conclusion

Summary (our sysytem)

e Our toy system with gpt-0ss-120b is pretty impressive

Matrix multiplication is easy, right? Yes, but still difficult.

Actual more complicated code? — will be more difficult

There are tons of ideas for improvement

Generatie Al
e A Must-Have Technology for Fugaku NEXT

e From an academic research perspective, there is concern about whether we can catch up
with the rapid pace of technological evolution (and $ cost for GPUs)

e Model performance and commercial services are evolving so rapidly — our modest efforts
will soon be wasted 7?7 (though still meaningful as research)

30/30

