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The Future of the Workforce in the Age of AI

• Opportunities: AI redefining tasks, roles, and productivity
– Up to 80% of jobs will see some tasks affected by AI.
– Routine, text-heavy, and analytical tasks are most exposed.
– AI drives augmentation over automation, enhancing human 

performance.
– New hybrid workflows: AI assists, humans curate and decide.
– Rising demand for AI literacy, adaptability, creativity, and ethics.

• Challenges: adapting for an AI-augmented future
– Organizations: must redesign jobs, upskill workers, and integrate AI 

responsibly.
– Workers: lifelong learning and hybrid skills are essential to stay 

competitive.
– Policy & Education: focus on inclusion, critical thinking, and fair 

transition support.
– By 2030 most jobs will evolve rather than disappear: new “human + 

AI” roles dominate.
– Success depends on collaboration, not competition, between 

humans and AI.

3
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Eric Schmidt, https://youtu.be/L5jhEYofpaQ: “Within 
the next 12 months, most programming jobs could be 
replaced by AI… AI systems will be able to surpass the 
brightest graduate-level mathematicians in tasks like 
advanced math and coding.” (04/10/2025)

https://youtu.be/L5jhEYofpaQ


Large Language Models (LLMs) abound

• GPT-4 (OpenAI)
• GPT-3 (OpenAI)
• Gemini (Google DeepMind)
• Claude 3 (Anthropic)
• Llama 3 (Meta AI)
• Falcon 180B (Technology Innovation Institute)
• BLOOM (BigScience)
• PaLM 2 (Google)
• Ernie 4.5 (Baidu)
• Qwen 3 (Alibaba Cloud)
  ⠇
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v Customer support & chatbots
v Content creation & copywriting
v Language translation & localization
v Sentiment analysis & classification
v Legal & contract review
v Supply chain, operations & decision-making support
v Personalized education & tutoring
v Document summarization & knowledge extraction
v Code generation & software development support
v Research assistance & scientific applications 
  ⠇
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これは和牛ではありません。



From LLMs to Foundation Models for Science
• Foundation models are large-scale AI systems trained on broad and diverse 

datasets, designed to serve as a base for multiple downstream applications
– Characteristics:

§ Trained on massive, multimodal data (text, images, audio, code, etc.)
§ Capable of transfer learning across diverse domains
§ Enable rapid development of customized AI tools and applications

– Relevance:
§ Drive advances in automation, research, and human–AI 

collaboration
§ Serve as the infrastructure layer of AI ecosystems
§ Lower barriers for innovation across domains

• AuroraGPT
– improve methodologies for the science community
– pre-trained, instruct-tuned and aligned models
– collecting and refining large-scale scientific datasets 

(models at 8x109 to 400x109 parameters)
– DOE’s Frontiers in Artificial Intelligence for Science, 

Security and Technology (FASST) 
• SciGPT

– https://www.stat.berkeley.edu/~mmahoney
– anchored on scientific principles and ML principles
– inclusion of scientific computing concepts
– implementations?
– applications? 
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§ Bommasani et al. (2022). On the Opportunities and Risks 
of Foundation Models. arXiv:2108.07258.

§ Menon et al. (2025). On Scientific Foundation Models: 
Rigorous Definitions, Key Applications, and a Survey. 
https://dx.doi.org/10.2139/ssrn.5409063.

§ Choi et al. (2025). Defining Foundation Models for 
Computational Science: A Call for Clarity and Rigor. 
arXiv:2505.22904.

From Menon et al.



AI-driven tools and applications in CS&E

• Chemistry and Materials Science
– prediction of molecular and material properties
– self-driving laboratories 
– ChemCrow (LLM chemistry agent)

• Drug discovery
– analyzes of vast amounts of data
– identification of risks factors
– prediction of patient outcomes 

• Vaccine development
– simulation of the immune system 
– creation of predictive models

• Network operations
– predictive analytics
– automated management
– enhanced security

• Advanced data analysis
– automation of tasks
– generation of predictive insights

• Predictive maintenance
• Design optimization
• Fault diagnosis 

⠇
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v Domain-aware scientific ML
v Interpretable scientific ML
v Robust scientific ML
v Data-intensive scientific ML 
v ML-enhanced modeling and simulation
v Automation and decision support

2019

v Nuclear energy
v Power grid
v Carbon management
v Energy storage
v Energy materials

2024

Retrospective on Exascale Panel @ ECPAM 2022

• Misses:
v Impact of ML/AI on applications and systems
v AI does not appear in the 2010 Exascale Report 

• Predictions for 2032:
v Scientists will use AI/ML
v AI-based automated code writing, testing and improvement
v Simulation apps will use AI hardware

White House’s Genesis Mission: dedicated, coordinated national effort 
to unleash a new age of AI-accelerated innovation and discovery that 
can solve the most challenging problems of this century.

The Japan News: About ¥190 billion will be earmarked for AI-related 
initiatives, with ¥45 billion allocated for the application of AI to 
scientific research.

Jeffrey Vetter
Pete Beckman
Jack Dongarra
Bob Lucas
Kathy Yelick



AI-driven tools to support coding

• AI-Powered Development Assistants
– Qodo
– Cursor AI
– Codeium
– AskCodi

• Code Intelligence & Completion
– Github Copilot
– Tabnine
– IntelliCode

• Security & Analysis
– DeepCode AI
– Codiga
– Amazon CodeWhisperer

• Cross-Language & Translation
– CodeT5
– Figstack
– CodeGeeX

• Educational & Learning Tools
– Replit
– OpenAI Codex
– SourceGraph Cody
– StarCoder

 ⠇
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– awesome-ai-coding-tools
– clauder
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§ Jiang et. (2024). A Survey on Large Language Models for Code 
Generation. arXiv:2406.00515.

§ Peng et al. (2023). The Impact of AI on Developer Productivity: 
Evidence from GitHub Copilot. arXiv:2302.06590. 

§ Dakhel et al. (2023). GitHub Copilot AI pair programmer: Asset 
or Liability? Journal of Systems and Software. 

§ Li et al. (2022). Competition-level code generation with 
AlphaCode. arXiv:2203.07814.



Source: Google Cloud’s DORA (DevOps Research and Assessment) 



AI & HPC Synergies – a partial list

• Code generation
• Code refactoring
• Code translation
• Developer productivity
• Automatic tuning
• Software testing
• Algorithm selection
 ⠇

9

§ Guo (2023). Six Opportunities for Scientists and Engineers to Learn Programming Using AI Tools Such as 
ChatGPT. IEEE CS&E.

§ Ozkaya (2023). Application of Large Language Models to Software Engineering Tasks: Opportunities, Risks, 
and Implications. IEEE CS&E. 

§ Haque (2025). LLMs: A Game-Changer for Software Engineers? arXiv:2411.00932. 
§ Ding et al. (2023). HPC-GPT: Integrating Large Language Model for High-Performance Computing, 

arXiv:2311.12833.
§ Yin et al. (2025). chatHPC: Empowering HPC users with large language models. J Supercomputing.
§ Teranishi et al. (2025). Leveraging AI for Productive and Trustworthy HPC Software: Challenges and 

Research Directions. arXiv:2505.08135.
§ Research Software Engineering in the Age of AI, panel at  SC25.
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Code generation/refactoring/translation

• Basic Linear Algebra Subprograms (BLAS) Generation 
– ChatBLAS

• based on Julia
• orchestrates with LLMs models
• ability to target different architectures

– Evaluation of BLAS 1, 2 and 3 generated with GPT-4.1 
and o4-mini
• “LLMs do not always learn the reference code as the best 

correct answer but that they learn the specifications of 
routines with documents available on the Internet.”

• Code translation
– FORTRAN to C++

• See https://fortran-lang.discourse.group: “Scientists are 
using artificial intelligence and large language models to 
rewrite old code in modern languages”

– OpenMP to CUDA, CUDA to OpenMP
• Parallelization

– HPC-Coder
– LASSI

10

§ Ranasinghe et al. (2025). LLM-Assisted Translation of 
Legacy FORTRAN Codes to C++: A Cross-Platform 
Study. arXiv:2504.15424.

§ Dhruv and Dubey (2025). Leveraging Large Language 
Models for Code Translation and Software 
Development in Scientific Computing. 
arXiv:2410.24119.

§ Chen et al. (2025). Fortran2CPP: Automating Fortran-
to-C++ Translation using LLMs via Multi-Turn Dialogue 
and Dual-Agent Integration. arXiv:2412.19770. 

§ Bhattarai et al. (2024). Enhancing Code Translation in 
Language Models with Few-Shot Learning via 
Retrieval-Augmented Generation. arXiv:2407.19619.

§ Nichols et al. (2024). HPC-Coder: Modeling Parallel 
Programs using Large Language Models, 
arXiv:2306.17281.

§ Dearing et al. (2024). LASSI: An LLM-Based 
Automated Self-Correcting Pipeline for Translating 
Parallel Scientific Codes. arXiv:2407.01638.

§ Valero-Lara et al. (2024). ChatBLAS: The 
First AI-Generated and Portable BLAS 
Library. SC24. 

§ Mukunoki et al. (2025). Performance 
Evaluation of General-Purpose Large 
Language Models for Basic Linear 
Algebra Subprograms Code Generation. 
arXiv:2507.04697.



Code development/refactoring/translation

11

Ranasinghe et al.’s 
workflow 

Dhruv and Dubey’s 
CodeScribe

CodeBLEU: metric for evaluating 
code generation, assessing  code 
quality by evaluating both syntax 
and semantic logic.

akashdhruv/CodeScribe
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Ranasinghe et al.’s 
workflow 

Dhruv and Dubey’s 
CodeScribe

CodeBLEU: metric for evaluating 
code generation, assessing  code 
quality by evaluating both syntax 
and semantic logic.

akashdhruv/CodeScribe

Using Generative AI for Coding Tasks in 
Scientific Software, 07/09/2025 webinar: 
https://ideas-productivity.org/events/
hpcbp-092-genai-coding



Developer Productivity: The IDEAS Project
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v Address confluence of trends in hardware and 
increasing demands for predictive multiscale, 
multiphysics simulations.

v Respond to trend of continuous refactoring with 
efficient agile software engineering 
methodologies & improved software design.

v IDEAS began in 2014 as a DOE ASRC/BER 
partnership to improve application software 
productivity, quality, and sustainability, and 
continued as part of DOE’s ECP.

Motto: Software Quality Drives Quality Science
– Do you develop and use HPC software?

• Investigate resources for software improvement
• Advocate for and lead change in your projects
• Disseminate insights about software improvement from 

your own work (blogs, presentations, posters, papers, etc.)
• Check out community activities, such as the Research 

Software Engineering (RSE) movement
– Do you lead projects or organizations where 

teams develop and use HPC software?
• Encourage continual software quality improvement
• Provide clear career paths and mentoring for scientific 

software professionals, such as research software engineers
– Are you a stakeholder or supporter of projects 

that develop and use HPC software?
• Incorporate expectations of software  quality and 

sustainability, including funding for people to do this 
important work

• Incorporate expectations for transparency and 
reproducibility

– Everyone
• Work toward changes in software citations/credit models, 

metrics
• Work toward changes in incentives,  training and education

§ L. C. McInnes et al. (2024). A Cast of Thousands: How the IDEAS 
Productivity Project Has Advanced Software Productivity and 
Sustainability. IEEE CS&E.

§ https://ideas-productivity.org
§ https://bssw.io



IDEAS-ECP: Outreach

13

Webinar Series: 
Best Practices for HPC Software Developers

• 73 webinars (June 2017 – December 2023)
• 12,000+ registrations in total
• average: 170 registrations (45 ECP-affiliated),

80 attendees

Tutorials
• Overview of Best Practices in HPC Software Development
• Code Coverage and Continuous Integration
• An Introduction to Software Licensing
• Agile Project Management
• Continuous Integration
• Software Refactoring
• Software Design 
• Software Testing 
• Reproducibility
• Git Workflows

Slides and videos available at 
https://ideas-productivity.org/events

Panel Series
• Performance Portability & ECP
• Strategies for Working Remotely

https://ideas-productivity.org/events
https://ideas-productivity.org/events
https://ideas-productivity.org/events


Opportunities (w.r.t. education/training)

• Categorize and summarize slides
– Summary of meetings can already be done with Zoom’s AI Companion

• Combine training materials
• Create customized material, 

targeting users’ needs, 
interests and time

• Help with the selection of 
topics for future events

 ⠇

October 11, 2023 Webinar
Taking HACC into the Exascale Era: New Code Capabilities, and Challenges

Esteban Rangel (Argonne National Laboratory)
- one slide summary -

14



● Numerical software often has many parameters that affects 
its performance on HPC platforms
– determining optimal values for such parameters in an 

impromptu way is very difficult (if not impossible)
– automatically adjusting parameters ‒ autotuning ‒ is of great 

interest 
●

–

–

–

–

§

§

§

§

Automatic Tuning
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● Numerical software often has many parameters that affects 
its performance on HPC platforms
– determining optimal values for such parameters in an 

impromptu way is very difficult (if not impossible)
– automatically adjusting parameters ‒ autotuning ‒ is of great 

interest 
● Autotuning
– directives:  OSKI, ppOpen-AT,  Xevolve …
– compilers: CHiLL, Orio, POET, moTuner …
– code generators: cuDNN, FFTW, Spiral …
– frameworks: black-box optimization problem (models)

§ OpenTuner: https://opentuner.org
§ Auto-Tuning Framework (ATF): https://atf-tuner.org
§ Optuna: https://optuna.org
§ GPTune: https://github.com/gptune/GPTune

Automatic Tuning

15



Automatic Tuning: GPTune

● Auto-tuning framework 
developed under the US 
Department of Energy’s ECP

● It uses Bayesian optimization 
based on Gaussian Process 
regression and supports 
advanced features such as multi-
objective tuning and parameter 
sensitivity analysis

● It targets the autotuning of HPC 
codes

● Readily available and adaptable
● History database

16

Liu et al. (2021). GPTune: multitask learning for 
autotuning exascale applications. Proc. 26th ACM 
SIGPLAN Symposium on Principles and Practice of 
Parallel Programming.
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GPTune: spaces

17

● Input (IS)
– defines the problems to be tuned
– each point in this space 

represents one instance of the 
problem

● Parameter (PS)
– defines the parameters to be 

tuned
– a point in this space corresponds 

a combination of the parameters
– the tuner finds the best possible 

combination of parameters that 
minimizes the objective function 
associated with the problem to be 
tuned

● Output (OS)
– Defines what needs to be 

optimized (e.g., runtime, 
accuracy, memory)



GPTune: spaces
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code snippets
● Input (IS)
– defines the problems to be tuned
– each point in this space 

represents one instance of the 
problem

● Parameter (PS)
– defines the parameters to be 

tuned
– a point in this space corresponds 

a combination of the parameters
– the tuner finds the best possible 

combination of parameters that 
minimizes the objective function 
associated with the problem to be 
tuned

● Output (OS)
– Defines what needs to be 

optimized (e.g., runtime, 
accuracy, memory)

# matrix dimensions and number of processes

  m     = Integer(512, mmax, transform="normalize", name="m")
  n     = Integer(512, nmax, transform="normalize", name="n") 
  nb    = Integer(1, 16, transform="normalize", name="nb")
  nproc = Integer(nprocmin, nprocmax, transform="normalize", name="nproc")
  p     = Integer(1, nprocmax, transform="normalize", name="p") 
  r     = Real(float("-Inf"), float("Inf"), name="r")

# input, parameters and output spaces

  IS = Space([m, n])           # problem to be tuned
  PS = Space([nb, nproc, p])   # parameters to be tuned
  OS = Space([r])              # what needs to be optimized
      ⋮

  problem = TuningProblem(IS, PS, OS, objective, constraints, …)
  computer = Computer(nodes, cores, hosts)

  options = …
 
  data = Data(problem)
  gt = GPTune(problem, computer, data, options)

  NI = ntask     # number of points in IS
  NS = nruns     # number of samples for each point in IS
  (data, model, stats) = gt.MLA(NS=NS, NI=NI, NS1=max(NS//2,1))



1) Call pdludriver.py with params
2) Write problem setting into file
3) Perform LU factorization
4) Write results into file
5) Get results (elapsedtime)

GPTune: interface with an application
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pdludriver.x
(executable file for LU, Fortran)

def objective(point): 
    
    params = [('LU', n, nodes, cores, nb, nthreads, nproc, p, q, 1., npernode)]
    print(params, ' scalapack starts ‘) 
    elapsedtime = pdludriver(params, niter=2, JOBID=JOBID)
    print(params, ' scalapack time: ', elapsedtime)

    return elapsedtime

pdludriver.py
(Python, wrapper for pdludriver.x)

scalapack.py
(Python, main, sets GPTune)

LU.in
(text file, problem setting)

LU.out
(write file, results)

2

4

1

3
5

5

nb row block size
mb column block size
p, q process grid

𝐴 = 𝐿𝑈
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1) Call pdludriver.py with params
2) Write problem setting into file
3) Perform LU factorization
4) Write results into file
5) Get results (elapsedtime)

GPTune: running
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pdludriver.x
(executable file for LU, Fortran)

pdludriver.py
(Python, wrapper for pdludriver.x)

scalapack.py
(Python, main, sets GPTune)

LU.in
(text file, problem setting)

LU.out
(write file, results)

2

4

1

3
5

5

mpirun -n 1 python ./scalapack.py -nodes 1 -cores 32 …

import mpi4py
    ⋮
comm = MPI.COMM_SELF.Spawn("pdludriver", … )

𝐴 = 𝐿𝑈



Experiments: ScaLAPACK QR

20

𝐴 = 𝑄𝑅
Q		is orthogonal
R		is upper triangular

Execution time for 2 tuning parameters, block size (nb, mb), p=1

• Experiments by Makoto Morishita
• MacBookAir (M1, 2020), Apple M1 chip, 8 cores, 8 GB, Ventura 13.4.1
• nb:  8~128; mb:  8~128; p, q: 1~8 (p×q <= 8)

• When the problem size is small (N = 1000) we get lower values for nb
• As the problem size increases (N = 3000) we get a larger set of 

possible nb’s and mb’s
• In general, the closer the block size is to a square (nb = mb), the more  

efficient the processing is 

matrix size (nb, mb)

1000×1000 (128, 24)

2000×2000 (40, 48)

3000×3000 (80, 56)



Experiments: ScaLAPACK PDGESVD
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𝐴 = 𝑈𝑆𝑉!
𝑈	and	𝑉	are	orthog.
𝑆	is	diagonal

case nodes cores mmax nmax ntask nrun
1 1 32 4000 4000 20 30
2 1 32 4000 4000 30 20

parameters for scalapack-SVD.py; min(m,n) = 512

Relative times for the matrix dimensions in the above figures, i.e. times for the optimal configurations 
obtained by GPTune divided by the time for standalone PDGESVD runs with nb = 64, p = 5 and q = 6



Experiments: ScaLAPACK PDSYEVX
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Times (s) for PDSYEVX on one node (haswell), standalone mode 
(dashed box) and configurations obtained with GPTune, NS = 10, 
"-nodes 1 -cores 32". In the table, nt = number of threads and np 
= number of processes. The times in magenta correspond 
to configurations found in the search phase.

𝜆, 𝑥 										only		𝜆

𝐴𝑥 = 𝜆𝑥
𝜆	is	a	scalar
𝑋 = 𝑥! 	𝑥!⋯𝑥" 	is	orthogonal
𝐴	is	5irst	reduced	to	tridiagonal

𝑇 =

𝑎! 𝑏!
𝑏! 𝑎# ⋱

⋱ ⋱ 𝑏"$!
𝑏"$! 𝑎"



Experiments: ScaLAPACK PDSYEVX
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Finding: A large workspace (argument LWORK in 
PDSYEVX) can lead to a poor load balancing and poor 

performance because the algorithm takes into account 
load balance and memory in an intricate way. The figure 

shows active processes (eigvec(T) plus back 
transformation) for a matrix of dimension 10K in a 

44x46 grid: process (23,44) computes 6 vectors while 
process (0,0) computes 2,026 vectors.

Time breakdown for the main phases of PDSYEVX: 
reduction to tridiagonal form T, eigval(T), and eigvec(T) 
plus back transformation of eigenvectors. Matrices of 

dimension 1000 to 8000. JOBZ =`V', RANGE = `A’ 
and UPLO = `U'.



Opportunities (w.r.t. code performance) 

• Performance models integrated with the generation of codes
• Use the feedback from running the generated code to fine-tune models
• Comparison of models
• Address model limitations
• Evaluation benchmarks that go beyond correctness to include metrics for code 

robustness and performance
• Detection and interpretability of hidden outliers
 ⠇

§ Wei et al. (2025). Improving Parallel Program Performance with 
LLM Optimizers via Agent-System Interfaces. Proc. 42nd Int. Conf. 
on Machine Learning.

§ Cribeiro-Ramallo, Arzamasov and Boehm (2024). Efficient 
Generation of Hidden Outliers for Improved Outlier Detection. 
ACM Transactions on Knowledge Discovery from Data.
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Testing: LAPACK as a case study

• User end
– set of tests performed at installation time
– single, double, real, complex

• Developer end
– no specific guidelines
– single, double, real, complex
– tests expected to be (very) difficult
– very tedious and time-consuming process
– bugs reported by users may take years to be fixed

• Focus: 𝐴𝑥 = 𝜆𝑥 (symmetric 𝐴) and 𝐴 = 𝑈𝑆𝑉! (general 𝐴)
– tests performed with all kinds of matrices (“torture” cases)
–        oamarques/STCollection
• test cases
• software
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Symmetric Tridiagonal Eigensolver

• Four algorithms (going back to LAPACK 3.1…) 
– QR iteration
– bisection and inverse iteration (BI)
– divide-and-conquer (DC)
– multiple relatively robust representations (MRRR)

• Experiments performed on 8 different architectures
• Large amount of data (performance and accuracy)
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Demmel et al. (2008). Performance and Accuracy of LAPACK's 
Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp.

Run time of all algorithms on Opteron. The slopes of 
the least-squares fit, shown in parentheses, are 

computed from the larger matrices.

Residuals and losses of orthogonality for all 
matrices on Opteron. (Top: All practical 

matrices. Bottom: All synthetic testing matrices. 
Note the difference in vertical scales.)

Performance trend lines of MRRR for run 
time divided by n2 on Opteron.

𝐴𝑥 = 𝜆𝑥
𝜆	is	a	scalar
𝑋 = 𝑥! 	𝑥!⋯𝑥" 	is	orthogonal
𝐴	is	5irst	reduced	to	tridiagonal

𝑇 =

𝑎! 𝑏!
𝑏! 𝑎# ⋱

⋱ ⋱ 𝑏"$!
𝑏"$! 𝑎"



BDSVDX

• 𝐵 = #𝑈 %𝑆 '𝑉!	through the eigenpairs of an associated 
symmetric tridiagonal matrix

• Computation of only a subset of singular values and 
corresponding vectors (potential performance gains)
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𝐵 =

𝑎" 𝑏"
𝑎# ⋱

⋱ 𝑏$%"
𝑎$

	 ⟹ 	 𝐶 = 0 𝐵
𝐵! 0 = 𝑃𝑇&'𝑃!; 	 𝑃 = [𝑒$(", 𝑒", 𝑒$(#, 𝑒#, 𝑒$(#, ⋯ 𝑒#$ ]

𝑇&' =

0 𝑎"
𝑎" 0 𝑏"

𝑏" 0 ⋱
⋱ ⋱ 𝑏$%"

𝑏$%" 0 𝑎$
0 𝑎$ 0

Marques, Demmel and Vasconcelos (2020). Bidiagonal SVD 
Computation via an Associated Tridiagonal Eigenproblem. 
ACM TOMS.

𝐴 = 𝑈𝑆𝑉!
𝑈	and	𝑉	are	orthogonal
𝑆	is	diagonal
𝐴	is	Iirst	reduced	to	bidiag. form

OM: If a and/or b is zero the matrix splits → the 
algorithm and the testing become complicated…



BDSVDX: residual and orthogonality, RANGE=“A”  
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BDSVDX: residual and orthogonality, RANGE= “I” and “V”
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resid =
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STCollection: hard tests behind the scenes

• Developed for 𝑇𝑠 = 𝜃𝑠
• Extended to 𝐵 = &𝑈 (𝑆 *𝑉!
• Matrices and eigenvalue distributions (and 

corresponding plots)
– Built-in eigenvalue distributions (e.g. geometric) 

and matrices (e.g. Wilkinson)
– Tridiagonal matrices derived from real world 

applications
§ Chemistry (analysis of molecules)
§ Harwell-Boeing Collection (structural engineering, etc)
§ SuiteSparse Matrix Collection (FEM analysis, NASA)
§ Matrices provided by LAPACK users (some related to bugs)
§ Lanczos algorithm without reorthogonalization to provoke 

very close eigenvalues

• Software (various versions)
• Flexible input file

30

Marques et al. (2008). Algorithm 880: 
A testing infrastructure for symmetric 
tridiagonal eigensolvers. ACM TOMS.

%---------------------------------------------------------------------
% This is a simple input file for STETESTER. 
%---------------------------------------------------------------------
%
% Cases 01-04:
%
VALUES                  % Sets built-in eigenvalue distributions
        3  4            % Distribution 3, EIG(i)=COND**(-(i-1)/(N-1))
       10 15            % Dimensions of the matrices to be generated
%
% Cases 05-16:
%
MATRIX  T               % Sets built-in matrices
        2   3           % Matrix type 2 and 3
       20:25            % Dimensions of the matrices to be generated
%
% Cases 17-18:
%
GLUED                   % Sets glued matrices
     1      2     1     % If 1, set eigenvalues; if 2, set matrix 
     1      2     3     % Eigenvalue distribution or matrix type
     10     11    12    % Dimensions
     0.001  0.002       % Glue factors
%
GLUED                   % Sets glued matrices
     1      2     1     % If 1, set eigenvalues; if 2, set matrix 
     1      2     3     % Eigenvalue distribution or matrix type
     10     11    12    % Dimensions
    -0.001 -0.002       % Glue factors
% 
% Cases 19-20:
%
VALUESF   DATA/T_0010.eig  % Eigenvalues read from file 'T10.eig'
MATRIXF T DATA/T_0010.dat  % Matrix read from file 'T10.dat'
%
% Tests to be performed. Note that 'ALL' is equivalent to
%
% "STEQRV"  (calls DSTEQR with COMPZ='V') 
% "STEVXA"  (calls DSTEVX with RANGE='A') 
% "STEVXI"  (calls DSTEVX with RANGE='I') 
% "STEVXV"  (calls DSTEVX with RANGE='V') 
% "STEDCI"  (calls DSTEDC with COMPZ='I') 
% "STEGRA"  (calls DSTEGR with RANGE='A') 
% "STEGRI"  (calls DSTEGR with RANGE='I') 
% "STEGRV"  (calls DSTEGR with RANGE='V') 
%
% Also note that no interval was specified (by means of EIGVI, EIGVV,
% NRILIU or NRVLVU) so in spite of 'ALL' some tests will be skipped. 
%
CALLST  ALL
%
% Halfbandwidth of the symmetric matrix to be generated and then
% tridiagonalized. This can save time for big matrices (if smaller
% than 100).
%
HBANDA  100
%
% Dump results in different formats (including Matlab)
%
DUMP    LOG  T  W  Z  T_MAT  W_MAT  Z_MAT
%
END



STCollection: eigenvalue distributions
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-1.107582174359294E+01
    -1.107582174359294E+01
    -1.107582174359292E+01
    -1.107582174359291E+01
    -1.107582174359290E+01
    -1.107580538638403E+01
    -1.107580538638399E+01
    -1.107580538638398E+01
    -1.107580538638397E+01
    -1.107579468129299E+01
    -1.107579468129296E+01
    -1.107579468129296E+01
    -1.107579468129292E+01
    -1.107579468129291E+01
    -1.107574609356799E+01
    -1.107574609356797E+01
    -1.107574609356795E+01
    -1.107574609356793E+01
    -1.107571441013466E+01
    -1.107571441013465E+01

T_Godunov_1e-2.eig
n=2500, 20 smallest and largest eigenvalues

T_Fann_06.eig
n=180, 20 smallest eigenvalues

-9.000099999684682E+02
    -9.000099998738725E+02
    -9.000099997162141E+02
    -9.000099994954936E+02
    -9.000099992117126E+02
    -9.000099988648727E+02
    -9.000099984549761E+02
    -9.000099979820255E+02
    -9.000099974460236E+02
    -9.000099968469744E+02
    -9.000099961848813E+02
    -9.000099954597482E+02
    -9.000099946715800E+02
    -9.000099938203817E+02
    -9.000099929061586E+02
    -9.000099919289162E+02
    -9.000099908886612E+02
    -9.000099897853999E+02
    -9.000099886191389E+02
    -9.000099873898861E+02

9.000099873898861E+02
     9.000099886191389E+02
     9.000099897853999E+02
     9.000099908886612E+02
     9.000099919289162E+02
     9.000099929061586E+02
     9.000099938203817E+02
     9.000099946715800E+02
     9.000099954597482E+02
     9.000099961848813E+02
     9.000099968469744E+02
     9.000099974460236E+02
     9.000099979820255E+02
     9.000099984549761E+02
     9.000099988648727E+02
     9.000099992117126E+02
     9.000099994954936E+02
     9.000099997162141E+02
     9.000099998738725E+02
     9.000099999684682E+02

T_Lipshitz_1.eig
n=1000, 20 smallest and largest eigenvalues

-2.6823372031320144e-16
  -2.2237154507547389e-16
  -2.2204461419491012e-16
  -2.2204460492503131e-16
  -1.8342609148280882e-16
  -1.3899996366291143e-16
  -1.1135703515315642e-16
  -5.5511152667964514e-17
  -4.9656459539928424e-17
  -3.6224205091068070e-17
  -3.4769060438593381e-17
  -2.9457359363955050e-17
  -1.8099200983560987e-17
  -9.9708593735412647e-18
  -4.4639982898565932e-18
  -4.1246352014896293e-18
  -3.9284577008713904e-18
  -3.6526711419576054e-18
  -2.2491630371466091e-18
  -1.8965391276166353e-18

1.0000000000000020e+00
   1.0000000000000022e+00
   1.0000000000000022e+00
   1.0000000000000022e+00
   1.0000000000000022e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000024e+00
   1.0000000000000029e+00
   1.0000000000000029e+00
   1.0000000000000029e+00
   1.0000000000000029e+00
   1.0000000000000031e+00
   1.0000000000000031e+00
   1.0000000000000033e+00



STCollection: eigenvalue distributions
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STCollection: plots of eigenvalue distributions
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Opportunities (w.r.t. software testing)

• Categorize tests
• Streamline the analysis of results (for publications)
• Which algorithm is preferable under certain conditions?
• Integration of meaningful tests in the generation of codes
• Choose tests based of data or plot characteristics 
• Test of code segments (akin to unit tests)
• Manage versions (e.g. real/complex) instead of 

using ”extract” (base files)
• Algorithm selection (next slides)
 ⠇

Oba, Tezuka and Hasegawa (2025). Prediction of Iterative Solvers 
Convergence Using Pretraining by Natural Images. 27th DaWaK.

OM: I fed STCollection into https://gitingest.com and 
obtained as output something that I am not sure it 
would be much useful for an LLM-based model…
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Algorithm Selection: A Poor Man’s AI

34

Application
𝐴𝑥 = 𝜆𝑥

database  (performance, accuracy …)

Smart Solver

parameters: n, neig, block 
size, tolerance, approximate 
𝑥’s, 𝜆‘s close to s, restart…

1) application sends data to Smart Solver
2) Smart Solver selects the algorithm
3) Smart Solver sends solution back 
4) Smart Solver updates the database

v Given a set of parameters:
• How to select an algorithm?
• How to update the database?

v Is the user allowed to bias the selection?
v How to package the algorithms?
v What to do in case of failure? 
v What to use as database? 

• Matrix properties?
• Which eigenvalues?
• Eigenvectors? 

§ Demmel, Li and Marques (2004). An Intelligent and Scalable 
Sparse Eigensolver Toolkit for High-End Computing. Submitted to 
NSF.

§ Kajiyama et al. (2006). SILC: A Flexible and Environment-
Independent Interface for Matrix Computation Libraries, LNCS 
3911.

§ Sakurai et al. (2013). A Sparse Matrix Library with Automatic 
Selection of Iterative Solvers and Preconditioners, Procedia 
Computer Science 18.

§ Yu et al. (2018). ELSI: A unified software interface for Kohn–Sham 
electronic structure solvers. Computer Physics Communications.

parameter    
algorithm 1 2 ⃛

A
B
⠇

20+ years ago😊

NERSC System Utilization 
(Aug’17 - Jul’18)

• electronic structure DFT 
eigenvalue problems ~ 
25% of the workload

• 10 codes > 50% of the 
workload

• 35 codes > 75% of the 
workload

• Over 600 codes 
comprise the remaining 
25% of the workload



Question to ChatGPT

Given a very large, sparse, real symmetric matrix, for which about 5% of the 
smallest eigenvalues and corresponding eigenvectors need to be computed, 
which eigenvalue solvers could be used for that task, considering accuracy and 
speed ?

Answer (next slides):

• summary of good options
• practical recommendations
• implementation suggestions / libraries
• quick decision tree
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Answer: summary of good options
• Block Lanczos / Krylov-Schur (ARPACK / ARPACK-NG / SLEPc / PRIMME)

– How: Krylov subspace method with restarting; use block variants when many eigenpairs required.
– Pros: Robust, well-tested, good for relatively small numbers of eigenpairs (hundreds → low thousands). Mature libraries (ARPACK-NG, SLEPc, PRIMME).
– Cons: Orthogonalization cost grows with number of wanted vectors; memory ~ O(n·m) with m = block/subspace size. Can be slow if you need many 

(tens of thousands) eigenpairs.
• LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient)

– How: Block method that uses a few vectors per iteration and accepts preconditioning.
– Pros: Excellent when a good preconditioner is available (AMG, ILU, domain decomposition). Good scaling to many eigenpairs if block size chosen well. 

Low communication cost for parallel runs. Implementations: BLOPEX, SLEPc, scipy.sparse.linalg.lobpcg.
– Cons: Needs good preconditioner for speed; still needs reorthogonalization.

• Davidson / Jacobi-Davidson (block versions)
– How: Subspace expansion with a correction equation solved approximately (often with preconditioning).
– Pros: Very effective for interior or clustered eigenvalues, and when good preconditioners exist for the correction equation. Good for many physics 

applications. Implementations: PRIMME (Jacobi-Davidson), SLEPc.
– Cons: Each step may require inner linear solves; implementation complexity higher.

• Shift-invert strategy (with any Krylov method)
– How: Transform smallest eigenvalues to largest by solving %𝐴 − 𝜎𝐼)"#𝑥 with 𝜎	near target (here 𝜎 = 0). Then run Lanczos/Arnoldi on the transformed 

operator.
– Pros: Very fast convergence to extreme or interior eigenvalues.
– Cons: Requires solving large sparse linear systems efficiently each iteration — i.e., a fast/robust direct solver or preconditioned iterative solver 

(multigrid/AMG, ILU) is essential. Memory and factorization cost can be the limiter.
• Spectrum-slicing / FEAST / Contour integration methods

– How: Slice the spectral interval containing the wanted eigenvalues into subintervals and solve many independent problems (often via contour integrals 
or rational filtering).

– Pros: Highly parallel (each slice independent), excellent when you want a large fraction of the spectrum (like 5%). FEAST and spectrum-slicing libraries 
work well for thousands → tens of thousands of eigenpairs.

– Cons: Each slice typically requires solving several linear systems (shifted matrices), so good linear solvers/preconditioners are again required.
• Polynomial/Chebyshev filtering + subspace iteration (filter-diagonalization)

– How: Apply polynomial filter that amplifies the wanted part of spectrum, then perform block subspace iterations/orthonormalization.
– Pros: Avoids inner linear solves (cheaper per apply if A is sparse); very suitable for computing many eigenpairs and for GPU/parallel architectures. Good 

for large fractions of spectrum.
– Cons: Need to design filters (degree vs cost) and handle orthogonalization overhead.

• Randomized / approximate methods
– How: Randomized subspace projection plus refinement (useful when only approximate eigenpairs are acceptable).
– Pros: Very fast and memory-friendly for approximations.
– Cons: Not ideal if high accuracy for many smallest eigenpairs is required.

36



Answer: summary of good options
• Block Lanczos / Krylov-Schur (ARPACK / ARPACK-NG / SLEPc / PRIMME)

– How: Krylov subspace method with restarting; use block variants when many eigenpairs required.
– Pros: Robust, well-tested, good for relatively small numbers of eigenpairs (hundreds → low thousands). Mature libraries (ARPACK-NG, SLEPc, PRIMME).
– Cons: Orthogonalization cost grows with number of wanted vectors; memory ~ O(n·m) with m = block/subspace size. Can be slow if you need many 

(tens of thousands) eigenpairs.
• LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient)

– How: Block method that uses a few vectors per iteration and accepts preconditioning.
– Pros: Excellent when a good preconditioner is available (AMG, ILU, domain decomposition). Good scaling to many eigenpairs if block size chosen well. 

Low communication cost for parallel runs. Implementations: BLOPEX, SLEPc, scipy.sparse.linalg.lobpcg.
– Cons: Needs good preconditioner for speed; still needs reorthogonalization.

• Davidson / Jacobi-Davidson (block versions)
– How: Subspace expansion with a correction equation solved approximately (often with preconditioning).
– Pros: Very effective for interior or clustered eigenvalues, and when good preconditioners exist for the correction equation. Good for many physics 

applications. Implementations: PRIMME (Jacobi-Davidson), SLEPc.
– Cons: Each step may require inner linear solves; implementation complexity higher.

• Shift-invert strategy (with any Krylov method)
– How: Transform smallest eigenvalues to largest by solving %𝐴 − 𝜎𝐼)"#𝑥 with 𝜎	near target (here 𝜎 = 0). Then run Lanczos/Arnoldi on the transformed 

operator.
– Pros: Very fast convergence to extreme or interior eigenvalues.
– Cons: Requires solving large sparse linear systems efficiently each iteration — i.e., a fast/robust direct solver or preconditioned iterative solver 

(multigrid/AMG, ILU) is essential. Memory and factorization cost can be the limiter.
• Spectrum-slicing / FEAST / Contour integration methods

– How: Slice the spectral interval containing the wanted eigenvalues into subintervals and solve many independent problems (often via contour integrals 
or rational filtering).

– Pros: Highly parallel (each slice independent), excellent when you want a large fraction of the spectrum (like 5%). FEAST and spectrum-slicing libraries 
work well for thousands → tens of thousands of eigenpairs.

– Cons: Each slice typically requires solving several linear systems (shifted matrices), so good linear solvers/preconditioners are again required.
• Polynomial/Chebyshev filtering + subspace iteration (filter-diagonalization)

– How: Apply polynomial filter that amplifies the wanted part of spectrum, then perform block subspace iterations/orthonormalization.
– Pros: Avoids inner linear solves (cheaper per apply if A is sparse); very suitable for computing many eigenpairs and for GPU/parallel architectures. Good 

for large fractions of spectrum.
– Cons: Need to design filters (degree vs cost) and handle orthogonalization overhead.

• Randomized / approximate methods
– How: Randomized subspace projection plus refinement (useful when only approximate eigenpairs are acceptable).
– Pros: Very fast and memory-friendly for approximations.
– Cons: Not ideal if high accuracy for many smallest eigenpairs is required.

36



Answer: practical recommendations 

• If “5%” corresponds to a modest number (≤ a few thousand eigenpairs) and you 
have moderate memory:
– Use block Krylov (ARPACK-NG, PRIMME) or LOBPCG with a good preconditioner.
– If eigenvalues are tightly clustered or convergence is slow, use Jacobi-Davidson or shift-invert (if you 

can solve linear systems fast).

• If “5%” is large (many thousands — e.g. n=1e6 → 50k eigenpairs):
– Prefer spectrum-slicing / FEAST or Chebyshev polynomial filtering + block subspace. These scale 

better when you need a big chunk of the spectrum and are embarrassingly parallel over slices or 
frequency intervals.

– Shift-invert becomes expensive at this scale unless you have an extremely fast parallel direct solver or 
extremely good preconditioners.

• If you have a powerful preconditioner (AMG, domain-decomp):
– LOBPCG or Jacobi-Davidson (block) + preconditioning is often the fastest and most memory-efficient 

route.

• If you need to run on distributed memory (MPI) or GPUs:
– Use parallel packages: SLEPc (with PETSc), PRIMME (has parallel support), or FEAST with parallel 

linear solvers. For GPU-focused workflows, look at libraries that support GPU linear solves for the 
shift-invert inner solves.
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Answer: implementation suggestions / libraries

• ARPACK-NG — classic, but single-vector ARPACK struggles when many 
eigenpairs are needed; use block-enabled variants where available.

• PRIMME — modern, high-performance; supports Davidson/JD/GD and 
preconditioning; good for many practical cases.

• SLEPc (on top of PETSc) — rich set of methods (Krylov-Schur, LOBPCG, 
Jacobi-Davidson, spectrum slicing), MPI-ready.

• FEAST — contour integration / spectrum slicing approach.
• BLOPEX / LOBPCG — simple, effective with preconditioning (integrated 

into SLEPc/Trilinos).
• Trilinos/Anasazi and ScaLAPACK for large parallel workflows.   
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Answer: quick decision tree

• Small → moderate k (hundreds): Block Lanczos / PRIMME / ARPACK-
NG.

• Moderate → large k and have good preconditioner: LOBPCG or 
Jacobi-Davidson (block) with preconditioning.

• Large k (5% large) or extreme scale: spectrum slicing / FEAST or 
Chebyshev filtering + block subspace.

• If fast direct solves available: use shift-invert + Krylov/JD for fastest 
convergence.
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Question to ChatGPT
Are eigenvalue problems solved in AI ?

Yes, eigenvalue problems are indeed solved in artificial intelligence (AI) algorithms and large language models (LLMs), though the way they appear may 
differ from traditional contexts (like solving 𝐴𝑥 = 𝜆𝑥) to more generalized linear algebra and optimization frameworks. Here are the key areas where 
they arise:

1. Principal Component Analysis (PCA) — Dimensionality Reduction
– Where: Used in preprocessing, feature reduction, data visualization, and sometimes in embeddings.
– Role: PCA involves computing the eigenvalues and eigenvectors of the covariance matrix of data to find directions (principal components) of maximum variance.
– References: 1) Jolliffe, I. T. (2002). Principal Component Analysis. Springer. 2) Murphy, K. (2012). Machine Learning: A Probabilistic Perspective (Chapter 12).

2. Spectral Clustering — Unsupervised Learning
– Where: Used in clustering tasks where the data has non-convex structures.
– Role: Involves computing the eigenvectors of the Laplacian matrix derived from the data graph. These eigenvectors are then used for clustering in a lower-dimensional space.
– References: 1) Ng, Jordan, and Weiss (2002). "On spectral clustering: Analysis and an algorithm." NIPS. 2) von Luxburg, U. (2007). "A tutorial on spectral clustering." Statistics and 

Computing.

3. Word Embeddings & Latent Semantic Analysis (LSA)
– Where: Early NLP methods and still foundational for understanding representations.
– Role: Singular Value Decomposition (SVD) — a close relative to eigenvalue decomposition — is used in LSA to reduce the dimensionality of term-document matrices.
– References: 1) Deerwester et al. (1990). "Indexing by latent semantic analysis." JASIS. 2) Turney & Pantel (2010). "From frequency to meaning: Vector space models of 

semantics." JAIR.

4. Optimization Problems in Deep Learning
– Where: In training neural networks, eigenvalues of the Hessian matrix (second derivative of the loss) provide insight into curvature and convergence.
– Role: Understanding the spectrum of the Hessian can inform learning rate schedules, saddle point avoidance, and generalization properties.
– References: 1) Sagun, Bottou, & LeCun (2017). "Eigenvalues of the Hessian in deep learning: Singularity and beyond." arXiv:1611.07476. 2) Ghorbani, Krishnan, & Xiao (2019). "An 

Investigation into Neural Net Optimization via Hessian Eigenvalue Density." ICML.

5. Transformers and Attention: Low-rank Approximations
– Where: Efficient transformers often use low-rank matrix approximations to speed up attention computations.
– Role: These approximations can involve SVD or eigen decompositions to approximate attention matrices (e.g., in Linformer, Performer).
– References: 1) Wang et al. (2020). "Linformer: Self-Attention with Linear Complexity." arXiv:2006.04768. 2) Choromanski et al. (2021). "Rethinking attention with performers." 

ICLR.

6. Graph Neural Networks (GNNs)
– Where: Applied in recommendation systems, molecule modeling, knowledge graphs.
– Role: Many GNNs rely on spectral graph theory, where eigenvalues of the graph Laplacian define convolutional operations.
– References: 1) Kipf & Welling (2017). "Semi-Supervised Classification with Graph Convolutional Networks." ICLR. 2) Defferrard et al. (2016). "Convolutional neural networks on 

graphs with fast localized spectral filtering."
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Application Area Eigenvalue Connection Used In
PCA Covariance matrix eigendecomposition Feature reduction, NLP

Spectral Clustering Graph Laplacian eigenvectors Clustering, vision
Latent Semantic Analysis SVD (related to eigenvalue problems) NLP

Optimization in Deep Nets Hessian eigenvalues Training diagnostics
Efficient Transformers Low-rank matrix approximations (SVD) Attention speed-up

Graph Neural Networks (GNNs) Spectral filters using eigenvalues of Laplacian Graph data modeling



Summary – AI & HPC Synergies (at a glance)
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• Within reach
– Summary and generation of specific education/training material, help 

with the selection of education/training topics, etc.
– Support for code translation and generation of specific kernels
– Support for algorithm selection (with some fine-tuning)

• Wish list
– Code generation integrated with performance models
– Support for interpretation of results (publications)
– Generation/selection of tests/benchmarking
– Support for debugging
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Andrej Karpathy’s talk at AI Startup School (Y Combinator):

• keep AI on a leash (autonomy slider)
• generation and verification



Thank you !


