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The Future of the Workforce in the Age of Al

* Opportunities: Al redefining tasks, roles, and productivity

Up to 80% of jobs will see some tasks affected by Al.

Routine, text-heavy, and analytical tasks are most exposed.

Al drives augmentation over automation, enhancing human
performance.

New hybrid workflows: Al assists, humans curate and decide.
Rising demand for Al literacy, adaptability, creativity, and ethics.

* Challenges: adapting for an Al-augmented future

Organizations: must redesign jobs, upskill workers, and integrate Al
responsibly.

Workers: lifelong learning and hybrid skills are essential to stay
competitive.

Policy & Education: focus on inclusion, critical thinking, and fair
transition support.

By 2030 most jobs will evolve rather than disappear: new “human +
Al” roles dominate.

Success depends on collaboration, not competition, between
humans and Al.
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Artificial Intelligence
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— Up to 80% of jobs will see some tasks affected by Al.
— Routine, text-heavy, and analytical tasks are most exposed.
— Al drives augmentation over automation, enhancing human
performance.
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responsibly.
— Workers: lifelong learning and hybrid skills are essential to stay
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Eric Schmidt, https://voutu.be/L5jhEYofpaQ: “Within

= Zirar, Ali and Islam (2023).

the next 12 months, most programming jobs could be Worker and workplace Al
replaced by Al... Al systems will be able to surpass the coexistence: emerging
brightest graduate-level mathematicians in tasks like themes and research

advanced math and coding.” (04/10/2025) agenda. Technovation.
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From LLMs to Foundation Models for Science

Foundation models are large-scale Al systems trained on broad and diverse
datasets, designed to serve as a base for multiple downstream applications

Characteristics:

= Trained on massive, multimodal data (text, images, audio, code, etc.)

= Capable of transfer learning across diverse domains

= Enable rapid development of customized Al tools and applications

Relevance:
= Drive advances in automation, research, and human-Al
collaboration
= Serve as the infrastructure layer of Al ecosystems
= Lower barriers for innovation across domains

AuroraGPT

improve methodologies for the science community
pre-trained, instruct-tuned and aligned models
collecting and refining large-scale scientific datasets
(models at 8x10° to 400x10° parameters)

DOE’s Frontiers in Artificial Intelligence for Science,
Security and Technology (FASST)

SciGPT

https://www.stat.berkeley.edu/~mmahoney
anchored on scientific principles and ML principles
inclusion of scientific computing concepts
implementations?

applications?
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From Menon et al.

= Bommasani et al. (2022). On the Opportunities and Risks
of Foundation Models. arXiv:2108.07258.

= Menon et al. (2025). On Scientific Foundation Models:
Rigorous Definitions, Key Applications, and a Survey.
https://dx.doi.org/10.2139/ssrn.5409063.

= Choi et al. (2025). Defining Foundation Models for
Computational Science: A Call for Clarity and Rigor.
arXiv:2505.22904.



Al-driven tools and applications in CS&E

*  Chemistry and Materials Science

— prediction of molecular and material properties

— self-driving laboratories
— ChemCrow (LLM chemistry agent)
*  Drugdiscovery
— analyzes of vast amounts of data
— identification of risks factors
— prediction of patient outcomes
* Vaccine development
— simulation of the immune system
— creation of predictive models
* Network operations
— predictive analytics
— automated management
— enhanced security
* Advanced data analysis
— automation of tasks
— generation of predictive insights
*  Predictive maintenance
* Design optimization
*  Fault diagnosis

Retrospective on Exascale Panel @ ECPAM 2022

e Misses:

2019

BASIC RESEARCH NEEDS FOR
Scientific Machine Learning

Core Technologies for Artificial Intelligence

Al FOR
4\ ENERGY

oport on Winter

ENERGY

< Nuclear energy < Domain-aware scientific ML
< Power grid % Interpretable scientific ML
< Carbon management % Robust scientific ML

< Energy storage < Data-intensive scientific ML
< Energy materials % ML-enhanced modeling and simulation
< Automation and decision support

Jeffrey Vetter
Pete Beckman
Jack Dongarra
Bob Lucas

+ Impact of ML/AI on applications and systems

- Al does not appear in the 2010 Exascale Report
* Predictions for 2032:

- Scientists will use Al/ML

Kathy Yelick

+ Al-based automated code writing, testing and improvement

- Simulation apps will use Al hardware

White House’s Genesis Mission: dedicated, coordinated national effort
to unleash a new age of Al-accelerated innovation and discovery that

can solve the most challenging problems of this century.

The Japan News: About ¥190 billion will be earmarked for Al-related
initiatives, with ¥45 billion allocated for the application of Al to

scientific research.



Al-driven tools to support coding

https://www.qodo.ai

* Al-Powered Development Assistants
— Qodo
— Cursor Al
— Codeium
— AskCodi
* Code Intelligence & Completion
— Github Copilot
— Tabnine
— IntelliCode
*  Security & Analysis
— DeepCode Al
— Codiga
— Amazon CodeWhisperer
*  Cross-Language & Translation
— CodeT5
— Figstack
— CodeGeeX
*  Educational & Learning Tools
— Replit
— OpenAl Codex
— SourceGraph Cody
— StarCoder
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* Al-Powered Development Assistants
— Qodo
— Cursor Al
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— Github Copilot
— Tabnine
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= Jiang et. (2024). A Survey on Large Language Models for Code

Generation. arXiv:2406.00515.

= Peng et al. (2023). The Impact of Al on Developer Productivity:

Evidence from GitHub Copilot. arXiv:2302.06590.

= Dakhel et al. (2023). GitHub Copilot Al pair programmer: Asset

or Liability? Journal of Systems and Software.
= [ietal (2022). Competition-level code generation with
AlphaCode. arXiv:2203.07814.



Reliance on Al by task e

Percentage of task performers who use Al

Writing new code
Modifying existing code
Writing documentation
Creating test cases
Explaining concepts
Analyzing data
Debugging
Understanding tech docs
Creating specifications
Code review

Maintaining legacy code

71%

66%
64%
62%
62%
I 61%
L ——————ck Y.
B mmmmmmmmemmi, 9%
el 56%
IR, 5%
I 55%

Source: Google Cloud’s DORA (DevOps Research and Assessment)



Al & HPC Synergies — a partial list

 Code generation

e Code refactoring

* Code translation
 Developer productivity
* Automatic tuning

e Software testing

e Algorithm selection

= Guo (2023). Six Opportunities for Scientists and Engineers to Learn Programming Using Al Tools Such as
ChatGPT. IEEE CS&E.

=  Ozkaya (2023). Application of Large Language Models to Software Engineering Tasks: Opportunities, Risks,
and Implications. IEEE CS&E.

= Haque (2025). LLMs: A Game-Changer for Software Engineers? arXiv:2411.00932.

= Ding et al. (2023). HPC-GPT: Integrating Large Language Model for High-Performance Computing,
arXiv:2311.12833.

= Yinetal. (2025). chatHPC: Empowering HPC users with large language models. J Supercomputing.

= Teranishi et al. (2025). Leveraging Al for Productive and Trustworthy HPC Software: Challenges and
Research Directions. arXiv:2505.08135.

= Research Software Engineering in the Age of Al, panel at SC25.
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 Developer productivity
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Code generation/refactoring/translation

Basic Linear Algebra Subprograms (BLAS) Generation

— Evaluation of BLAS 1, 2 and 3 generated with GPT-4.1

ChatBLAS

* based on Julia
e orchestrates with LLMs models
* ability to target different architectures

and o4-mini

* “LLMs do not always learn the reference code as the best
correct answer but that they learn the specifications of
routines with documents available on the Internet.”

Code translation

FORTRAN to C++

* See https://fortran-lang.discourse.group: “Scientists are
using artificial intelligence and large language models to

rewrite old code in modern languages”

— OpenMP to CUDA, CUDA to OpenMP
Parallelization

HPC-Coder
LASSI

10

= Valero-Lara et al. (2024). ChatBLAS: The
First Al-Generated and Portable BLAS
Library. 5C24.

=  Mukunoki et al. (2025). Performance
Evaluation of General-Purpose Large
Language Models for Basic Linear
Algebra Subprograms Code Generation.
arXiv:2507.04697.

Ranasinghe et al. (2025). LLM-Assisted Translation of
Legacy FORTRAN Codes to C++: A Cross-Platform
Study. arXiv:2504.15424.

Dhruv and Dubey (2025). Leveraging Large Language
Models for Code Translation and Software
Development in Scientific Computing.
arXiv:2410.241189.

Chen et al. (2025). Fortran2CPP: Automating Fortran-
to-C++ Translation using LLMs via Multi-Turn Dialogue
and Dual-Agent Integration. arXiv:2412.19770.
Bhattarai et al. (2024). Enhancing Code Translation in
Language Models with Few-Shot Learning via
Retrieval-Augmented Generation. arXiv:2407.196189.
Nichols et al. (2024). HPC-Coder: Modeling Parallel
Programs using Large Language Models,
arXiv:2306.17281.

Dearing et al. (2024). LASSI: An LLM-Based
Automated Self-Correcting Pipeline for Translating
Parallel Scientific Codes. arXiv:2407.01638.



Code development/refactoring/translation

Ranasinghe et al.’s
workflow

Dhruv and Dubey’s [#)akashdhruv/CodeScribe

CodeScribe

Fortran compile
code C++
- _— translation
Prompt
L. _— compiles?
Ground
truth C++ run
translation executable
- _— and record
Completion output
with
translated
C++ code timeout?

between C++

record
errors and
STOP

compare

output record
results
and Fortran and STOP

executables

nonzero
status

compute
CodeBLEU
score

translated
C++ code

record
and STOP

Y
[ TOML Chat Templates

1

FORTRAN files with similal
code patterns

FORTRAN
Codebase

’}

X

Failure

Success
[Developer Review/'l'esting]ui

A

CodeBLEU: metric for evaluating
code generation, assessing code
quality by evaluating both syntax
and semantic logic.

A 4

‘ C++ and Fortran-C
Interface Files

C++ ’
Codebase

Indexing ]—»[ Neural Inspection] [ Draft Generation

Neural Translation

¢/> CodeScribe

11



Code development/refactoring/translation

Fortran

Ranasinghe et al.’s code
J
workflow

Prompt
___/__

Ground
truth C++
translation
—

—~——
Completion
with
translated
C++ code

compute
CodeBLEU
score

compile
C++
translation

compiles?

run

executable

and record
output

timeout?

record CodeBLEU: metric for evaluating
"‘”E‘;Tré";”d code generation, assessing code
quality by evaluating both syntax

and semantic logic.

compare
output record
between C++ results
and Fortran and STOP
executables

nonzero
status

translated
C++ code

record
and STOP

Using Generative Al for Coding Tasks in
Scientific Software, 07/09/2025 webinar:

Dhruv and Dubey’s [#Yakashdhruv/Code
CodeScribe

FORTRAN
Codebase {

Indexing ]—»[ Neural

U LLMs have a great deal of promise in coding related tasks

U4 A judicious combination of scripts, LLMs and human-in-the-loop have already
helped in reducing tedious tasks

U They are still very far from being reliable assistants for non-trivial coding on their

own

U We have had no luck so far with code refactoring — explaining the full context of the

existing code has

https://ideas-productivity.org/events/
CONCLUSIONS hpcbp-092-genai-coding

been too difficult so far

47

11



Developer Productivity: The IDEAS Project

X/
°e

X/
°e

X/
°e

Address confluence of trends in hardware and
increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering
methodologies & improved software design.
IDEAS began in 2014 as a DOE ASRC/BER
partnership to improve application software

productivity, quality, and sustainability, and
continued as part of DOE’s ECP.

 Accelerating design space

* Software community

« Software Development Kits

« Webinar Series:

« Tutorials on Practices for

IDEAS
Interoperable Design of Extreme-Scale Application Software

* Productivity and

exploration Sustainability
* Advancing quality, usability Improvement Planning
and interoperability, while (PSIP)

respecting team autonomy « Team of teams concepts
« Better Scientific Software

g Fosterin: Incubating
s (BSSw.io) website

policies software  and curating
communities methodologies
(SDKs) and E4S: xSDK, and resources
CAT-SDK, DAV-SDK, SWAS,

etc

Disseminating

knowledge
to advance developer productivity 4
and software sustainability

* BSSw Fellowship
Program
* Panel Series:
« Strategies for Working
Remotely
*+ Performance Portability

« Events: BOFs,
workshops, and more

* HPC Best Practices
= HPC Workforce Development
and Retention

Better Scientific Software

12

Motto: Software Quality Drives Quality Science

— Do you develop and use HPC software?
. Investigate resources for software improvement
. Advocate for and lead change in your projects
. Disseminate insights about software improvement from
your own work (blogs, presentations, posters, papers, etc.)
. Check out community activities, such as the Research
Software Engineering (RSE) movement

— Do you lead projects or organizations where

teams develop and use HPC software?

. Encourage continual software quality improvement

. Provide clear career paths and mentoring for scientific
software professionals, such as research software engineers

— Are you a stakeholder or supporter of projects

that develop and use HPC software?

. Incorporate expectations of software quality and
sustainability, including funding for people to do this
important work

. Incorporate expectations for transparency and
reproducibility
— Everyone
. Work toward changes in software citations/credit models,
metrics

. Work toward changes in incentives, training and education

= [. C. Mclnnes et al. (2024). A Cast of Thousands: How the IDEAS
Productivity Project Has Advanced Software Productivity and
Sustainability. IEEE CS&E.

= https://ideas-productivity.org

= https://bssw.io



IDEAS-ECP: Outreach

Webinar Series:
Best Practices for HPC Software Developers

» 73 webinars (June 2017 — December 2023)

* 12,000+ registrations in total

* average: 170 registrations (45 ECP-affiliated),
80 attendees

Slides and videos available at
https.//ideas-productivity.org/events
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Tutorials

* Overview of Best Practices in HPC Software Development
* Code Coverage and Continuous Integration

* An Introduction to Software Licensing

e Agile Project Management

* Continuous Integration
* Software Refactoring

* Software Design
* Software Testing
* Reproducibility

* Git Workflows

13

Panel Series

* Performance Portability & ECP
* Strategies for Working Remotely

m gov
= edu
= com

other



https://ideas-productivity.org/events
https://ideas-productivity.org/events
https://ideas-productivity.org/events

Opportunities (w.r.t. education/training)

Categorize and summarize slides

— Summary of meetings can already be done with Zoom’s Al Companion

Combine training materials

Create customized material,
targeting users’ needs,
interests and time

Help with the selection of
topics for future events

14

October 11, 2023 Webinar
Taking HACC into the Exascale Era: New Code Capabilities, and Challenges
Esteban Rangel (Argonne National Laboratory)
- one slide summary -

HACC for Exascale: Capabilities & Challenges

* Purpose:
Simulate large-scale cosmic structure formation (dark matter halos, merger trees,
light-cones) to support surveys and theoretical models.
* Architecture Overview:
— Long-range: Particle-mesh + FFT methods
— Short-range: Particle-particle solver
— Optimized for hybrid GPU/CPU architectures
* Exascale Preparedness:
— Tackling imbalance between compute & memory growth
— Adding baryonic physics with CRK-HACC (SPH + subgrid models)
— Migrating CUDA to SYCL for performance portability across NVIDIA, AMD, Intel GPUs
— Achieved ~96% portability with minimal code divergence
* Challenges & Lessons:
— In-situ analysis now a performance bottleneck—needs GPU acceleration
— Managing multiple GPU codebases is costly = unified, portable programming models
required
* Bottom Line:
HACC evolves for exascale by integrating advanced physics, achieving multi-GPU
portability, and addressing growing computational and data-analysis complexity.




Automatic Tuning

e Numerical software often has many parameters that affects
its performance on HPC platforms
— determining optimal values for such parameters in an
impromptu way is very difficult (if not impossible)
— automatically adjusting parameters — autotuning — is of great
interest

15



Automatic Tuning

e Numerical software often has many parameters that affects
its performance on HPC platforms
— determining optimal values for such parameters in an
impromptu way is very difficult (if not impossible)
— automatically adjusting parameters — autotuning — is of great

interest

Consider this reasonable optimization space

Unroll k IOtOp 8from 1, up 8 implementations
0
Unroll q loop, from . 4 .
1t04 32 implementations

Prefetch 1 to 5 -
160

cache lines before : .
loop ! implementations

Prefetch before loop 1 to 1600
10 rows in advance implementations ‘

Prefetch 1 cacheline with inner
loop, 1 to 30 iterations ahead of 48000 ’

time implementations

= work for 250 summer
internships

July 08 Copyright 2008, Cray Inc.




Automatic Tuning

e Numerical software often has many parameters that affects

its performance on HPC platforms

— determining optimal values for such parameters in an
impromptu way is very difficult (if not impossible)

— automatically adjusting parameters — autotuning — is of great
interest

e Autotuning
— directives: OSKI, ppOpen-AT, Xevolve ...
— compilers: CHiLL, Orio, POET, moTuner ...
— code generators: cuDNN, FFTW, Spiral ...

— frameworks: black-box optimization problem (models)
=  OpenTuner: https://opentuner.org
=  Auto-Tuning Framework (ATF): https://atf-tuner.org
= Optuna: https://optuna.org
=  GPTune: https://github.com/gptune/GPTune

15



Automatic Tuning: GPTune

e Auto-tuning framework
developed under the US
Department of Energy’s ECP

e |t uses Bayesian optimization
based on Gaussian Process
regression and supports
advanced features such as multi-
objective tuning and parameter
sensitivity analysis

e It targets the autotuning of HPC
codes

e Readily available and adaptable

e History database

Liu et al. (2021). GPTune: multitask learning for
autotuning exascale applications. Proc. 26th ACM

SIGPLAN Symposium on Principles and Practice of
Parallel Programming.

16

Tutorial ~ Log In To History Databae

GPTune

GPTune is a performance autotuner designed particularly for HPC applications that are expensive to
evaluate. GPTune uses Bayesian optimization based on Gaussian Process regression and supports
advanced features such as multi-task learning, transfer learning, multi-fidelity/objective tuning, and
parameter sensitivity analysis.

See more information

[ GitHub

User Guide ] l Tutorial (2023) l l Issue Report l

History Database

GPTune provides a shared database (history database) that allows users to share performance data
samples, so everyone can benefit from (expensive) runs of widely used high-performance computing
codes. Sign up for free to access more data and use all the available features of the history database.

See more information

Current statistics
« Number of tuning problems (target applications): 70
« Number of registered users: 48
« Number of function evaluations: 14686

l Dashboard

Sign Up l l Popular Examples




Automatic Tuning: GPTune

e Auto-tuning framework
developed under the US
Department of Energy’s ECP CAIID

GPTune is a performance autotuner designed particularly for HPC applications that are expensive to

evaluate. GPTune uses Bayesian optimization based on Gaussian Process regression and supports

[ ) It u S e S B aye S i a n 0 pti m i Za ti O n advanced features such as multi-task learning, transfer learning, multi-fidelity/objective tuning, and
parameter sensitivity analysis.
based on Gaussian Process See more nformaton
[ GitHub User Guide ] l Tutorial (2023) l [ Issue Report l

regression and supports
advanced features such as multi-
objective tuning and parameter
sensitivity analysis

e It targets the autotuning of HPC

Performance Data (Function Evaluation Results)

Search:

E]
.
ls
3
r]
3

codes
e Readily available and adaptable
e History database

T TR R A 1 ]
EEEEE|S

:

F & EE

Liu et al. (2021). GPTune: multitask learning for reics [l 2
autotuning exascale applications. Proc. 26th ACM

SIGPLAN Symposium on Principles and Practice of

Parallel Programming.
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GPTune: spaces

e Input (IS)
— defines the problems to be tuned
— each point in this space
represents one instance of the
problem
e Parameter (PS)
— defines the parameters to be
tuned
— apointin this space corresponds
a combination of the parameters
— the tuner finds the best possible
combination of parameters that
minimizes the objective function
associated with the problem to be
tuned
e Output (OS)

— Defines what needs to be
optimized (e.g., runtime,
accuracy, memory)

17



GPTune: spaces

code snippets

e Input (IS)
— defines the problem
— each point in this sp
represents one instz
problem
e Parameter (PS)
— defines the paramet
tuned
— a point in this space
a combination of thi
— the tuner finds the k
combination of para
minimizes the objec
associated with the
tuned
e Output (OS)

— Defines what needs
optimized (e.g., runt
accuracy, memory)

# matrix dimensions and number of processes

m = Integer (512, mmax, transform="normalize", name="m")

n = Integer (512, nmax, transform="normalize", name="n")

nb = Integer(l, 16, transform="normalize", name="nb")

nproc = Integer (nprocmin, nprocmax, transform="normalize", name="nproc")
P = Integer(l, nprocmax, transform="normalize", name="p")

r = Real (float("-Inf"), float("Inf"), name="r")

input, parameters and output spaces

IS = Space([m, n]) # problem to be tuned
PS = Space([nb, nproc, pl) # parameters to be tuned
oS =

Space([r]) # what needs to be optimized
problem = TuningProblem (IS, PS, OS, objective, constraints, ..)
computer = Computer (nodes, cores, hosts)
options = ..

data = Data (problem)
gt = GPTune (problem, computer, data, options)

NI = ntask # number of points in IS
NS = nruns # number of samples for each point in IS
(data, model, stats) = gt.MLA(NS=NS, NI=NI, NSl=max(NS//2,1))

17




GPTune: interface with an application

A=LU

pdludriver.x

LU.out

(executable file for LU, Fortran)

@ |®

scalapack.py
(Python, main, sets GPTune)

def objective(point):
params = [('LU', n, nodes, cores, nb, nthreads, nproc, p, q, 1., npernode)]
print(params, ' scalapack starts ‘)
elapsedtime = pdludriver(params, niter=2, JOBID=JOBID)
print(params, ' scalapack time: ', elapsedtime)

return elapsedtime

18

@

\ 4

(write file, results)

pdludriver.py C LU.in
(Python, wrapper for pdludriver.x) (text file, problem setting)

1) Call pdludriver.py with params
2) Write problem setting into file
3) Perform LU factorization

4) Write results into file

5) Get results (elapsedtime)

5x5 matrix partitioned in 2x2 block size 2x2 process grid
1 1
1 1
A1 Qg2 193 Qg4 a;n Qg2 A3 Q14
Q21 Q22 123 Q24 1 Q25] a21 ay) 1 |az
31 A3z A3z QA3q | A35| - ass
A1 (a2 1043 Gag 2 (45| a31 EE a3s “3“34
| Ass a1 A5 | Ag—04y4
nb row block size
mb column block size
P, q process grid




GPTune: interface with an application

A=LU

pdludriver.x
(executable file for LU, Fortran)

\ 4

@

pdludriver.py
(Python, wrapper for pdludriver.x)

LU.out
(write file, results)

_@_.

@ |®

scalapack.py
(Python, main, sets GPTune)

LU.in
(text file, problem setting)

def objective(point):

params = [('LU', n, nodes, cores, nb, nthreads, nproc, p, q, 1., npernode)]

print(params, ' scalapack starts ‘)
elapsedtime = pdludriver(params, niter=2, JOBID=JOBID)
print(params, ' scalapack time: ', elapsedtime)

return elapsedtime

LU + solve (PDGETRF+PDGETRS) for different grids on carver, NB=8

time (s)

8.00-9.00
7.00-8.00
6.00-7.00

™ 5.00-6.00
4.00-5.00
w3.00-4.00
2,00-3.00
= 1.00-2.00
= 0.00-1.00

18



GPTune: running

A=LU

pdludriver.x
(executable file for LU, Fortran)

LU.out
(write file, results)

®

®

pdludriver.py
(Python, wrapper for pdludriver.x)

C LU.in
(text file, problem setting)

@ |®

scalapack.py
(Python, main, sets GPTune)

1) Call pdludriver.py with params
Write problem setting into file
form LU factorization

ciiltec intn fila

import mpi4py

comm = MPI.COMM_SELF.Spawn("pdludriver”, ...

mpirunl\fn f;python .[scalapack.py -nodes 1 -cores 32 ...

19



Experiments: ScaLAPACK QR

A =0QR
Q is orthogonal
R is upper triangular

* Experiments by Makoto Morishita

* MacBookAir (M1, 2020), Apple M1 chip, 8 cores, 8 GB, Ventura 13.4.1
* nb: 8v128; mb: 8~128; p, q: 1~8 (pxq <= 8)

— Matrix size: 10001000 Matrix size: 20002000 Matrix size: 3000%X3000 ——
[ ,. L ] @ 4Il e e o 0 4: ./> :: | | | | | | ‘ :: | | | . | g ." ¢ ::
Execution time for 2 tuning parameters, block size (nb, mb), p=1
* When the problem size is small (N = 1000) we get lower values for nb matrix size (b, mb)

* Asthe problem size incr N = w larger :
st -ep ob/e size ,c eases (N = 3000) we get a larger set of 1000%1000 (128, 24)
possible nb’s and mb’s 2000X2000 10,48
. . x )
* In general, the closer the block size is to a square (nb = mb), the more ( )
efficient the processing is 30003000 (80, 56)

20




Experiments: ScaLAPACK PDGESVD

A=USVT
U and V are orthog.
S is diagonal

parameters for scalapack-SVD.py; min(m,n) =512

case nodes cores
1 1 32
2 1 32
4000 ®
L]
as00 |- ®
[
L]
3000 °
[ ]
[ ]
2500 °
[ ]
°
2000 [
[ ]
1500 ° L
[
d
1000 [ ]
[
500 L ' 1 i ' [ )
500 1000 1500 2000 2500 3000 3500 4000

Relative times for the matrix dimensions in the above figures, i.e. times for the optimal configurations
obtained by GPTune divided by the time for standalone PDGESVD runs withnb =64, p=5andg=6

" 3500

£.99
0.99
997
D94
.98 .94
pe?® 098 P97
9.97
959
ey D.96
41.00
as00” .60
> .62 e
3000 " 952 J)9'54 - <3000
2500 } <" 2500
20000 2000
PN Y
15007 N -7 1500
n 1000 1000 m
500”500

4000

mmax
4000
4000

Brelative tme

nmax

4000
4000

4000

ntask

20
30

nrun

30
20

3500

3000

2500

c

2000

1500

1000

500
500

'
1000 1500

'
2000

m

|
2500

.00
.00 0.96
098 0.96 .97
2.
1. 088 097086 0
. 0.97
" N %8s 0.98
300"
2500%\._ 063052
2000‘
1500 "\
" 1000 i
500;.( 500

1
3000

L
3500

.98

4000
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Experiments: ScaLAPACK PDSYEVX

Ax = Ax

Ais ascalar
X =[xy x1:-x,, ] is orthogonal
A is first reduced to tridiagonal

[a; by
Times (s) for PDSYEVX on one node (haswell), standalone mode T = b1 a;
(dashed box) and configurations obtained with GPTune, NS = 10, . by,
"-nodes 1 -cores 32". In the table, nt = number of threads and np b, ., a,
= number of processes. The times in magenta correspond
to configurations found in the search phase.
(4,x) only A
L —_—_—_———————— |
i nb=32, p=5, q=6 i GPTune
n ;JOBZ=V’ .]OBZ:‘NE JOBZ="V’ JOBZ="N’
i time time i nb nt np p q time nb nt np p g time
3000 | 0.68 0.57 1 16 1 30 4 7 0.70 96 1 30 15 2 0.45
3500 ! 64 1 27 5 5 115 120 1 31 4 7 069
4000 i 1.64 1.03 i 32 1 31 1 31 1.57 32 1 26 26 1 1.03
4500 i i 56 1 31 3 10 2.88 64 1 27 3 9 1.66
5000 i 4.11 3.12 i 64 1 30 5 6 3.95 24 1 30 30 1 2.75
5500 | i 24 1 31 2 15 6.20 16 1 30 30 1 4.17
6000 i 8.97 6.72 1 64 1 31 1 31 8.46 24 1 31 3 10 5.62
6500 i i 120 1 25 3 8 14.80 8 1 26 2 13 7.75
7000 i 18.8 11.1 i 120 1 31 2 15 18.50 120 1 30 30 1 11.90
7500 © 64 1 31 2 15 3150 120 1 29 2 14 13.10
8000 i 40.0 22.3 i 32 1 31 2 15 37.00 8 1 31 30 1 16.10

22



Experiments: ScaLAPACK PDSYEVX

40

35

time (s)
n
o

Time breakdown for the main phases of PDSYEVX:
reduction to tridiagonal form T, eigval(T), and eigvec(T)
plus back transformation of eigenvectors. Matrices of
dimension 1000 to 8000. JOBZ ='V', RANGE ="A’

T T
[l reduction to tridiag
eig(tridiag)
[_Jeigenvectors

matrix

and UPLO ="U".

23

45

40

35

30

25 -

20 -

Finding: A large workspace (argument LWORK in
PDSYEVX) can lead to a poor load balancing and poor
performance because the algorithm takes into account
load balance and memory in an intricate way. The figure

shows active processes (eigvec(T) plus back

transformation) for a matrix of dimension 10K in a
44x46 grid: process (23,44) computes 6 vectors while

process (0,0) computes 2,026 vectors.



Opportunities (w.r.t. code performance)

* Performance models integrated with the generation of codes

 Use the feedback from running the generated code to fine-tune models
 Comparison of models

e Address model limitations

* Evaluation benchmarks that go beyond correctness to include metrics for code
robustness and performance

* Detection and interpretability of hidden outliers

= Wejetal. (2025). Improving Parallel Program Performance with
LLM Optimizers via Agent-System Interfaces. Proc. 42"¢ Int. Conf.
on Machine Learning.

= Cribeiro-Ramallo, Arzamasov and Boehm (2024). Efficient
Generation of Hidden Outliers for Improved Outlier Detection.
ACM Transactions on Knowledge Discovery from Data.
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Testing: LAPACK as a case study

 User end
— set of tests performed at installation time
— single, double, real, complex

 Developer end
— no specific guidelines
— single, double, real, complex
— tests expected to be (very) difficult
— very tedious and time-consuming process
— bugs reported by users may take years to be fixed

 Focus: Ax = Ax (symmetric A) and A = USVT (general A)
— tests performed with all kinds of matrices (“torture” cases)

— [®] oamarques/STCollection
* test cases
* software

25



Symmetric Tridiagonal Eigensolver

Ax = Ax

Ais ascalar

X =[xy x1:-x,, ] is orthogonal
A is first reduced to tridiagonal

(4, by
* Four algorithms (going back to LAPACK 3.1...) . .
— QR iteration - -
. . . . . : n_
— bisection and inverse iteration (BI) I by a |
— divide-and-conquer (DC)
— multiple relatively robust representations (MRRR) — —
* Experiments performed on 8 different architectures -
-E .ooooggo . 000
* Large amount of data (performance and accuracy) P %&M@
- | gy !
ot ITlme\/sn{orOpteron. pratftlcalma(nces o Tlme(l'VIF!)/n’inseconds °]:§ o
Run time of all algorithm:g:goonpteron. The slopes of Performance trend I?:::Zf MRRR for run Residuals and losses of orthogonality for all
the least-squares fit, shown in parentheses, are time divided by n2 on Opteron. matrices on Opteron. (Top: All practical

computed from the larger matrices.

Demmel et al. (2008). Performance and Accuracy of LAPACK's
Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp.

26

matrices. Bottom: All synthetic testing matrices.
Note the difference in vertical scales.)



BDSVDX

A=USVT

U and V are orthogonal

S is diagonal

A is first reduced to bidiag. form

« B = USVT through the eigenpairs of an associated

symmetric tridiagonal matrix

 Computation of only a subset of singular values and
corresponding vectors (potential performance gains)

Ay

Tex =

by

a,
a,
0 b
by O

= C=[
bn—l
0 an
an 0 |

BT

B

27

_ T. _
0] = PTgxP"; P = [ent1,€1,€n42,€2,€n42, """ €20 |

OM: If a and/or b is zero the matrix splits — the

algorithm

and the testing become complicated...

Marques, Demmel and Vasconcelos (2020). Bidiagonal SVD
Computation via an Associated Tridiagonal Eigenproblem.

ACM TOMS.



BDSVDX: residual and orthogonality, RANGE="A"

_|omsr =] - 07o) A
resid = ———— orthU = ——— orthV = ——m48 —
||Bllne ne ne
250 250 ] 250 )
" X| x By ® o
200 200 200
150 150 150
X [ ] )
100 ¥ 100 100
X X
50 B 50 50
X [ ] °
«.
0 0 0
1E+0 1E+1 1E+2 1E+3 1E+4 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4
N O o Mresid WorthU EorthV
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N NN
100
10 n i
m M
—
X nn 1
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BDSVDX: residual and orthogonality, RANGE= “I” and “V”

results for “1” (left) and “V” (right) generated randomly, 10 pairs per matrix

o loer s Is-7g) It = 979] o loer =] Is-7g) =79
resid = ———— orthU = +¥——— orthV = =—— resid = ———— orthU = —— orthV = =——
lIBline ne ne lIBlIne ne ne
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k .
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o
2000 I 2000 2000 2000 [RS8 2000 2000
1500 1500 1500 1500 1500 1500
°
1000 (% 1000 1000 1000 RSB 1000 1000 e s
% 4
500 500 500 500 500 500
oo
®| oo
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STCollection: hard tests behind the scenes

* Developed for Ts = Os

« Extendedto B = USVT

* Matrices and eigenvalue distributions (and
corresponding plots)

— Built-in eigenvalue distributions (e.g. geometric)
and matrices (e.g. Wilkinson)

— Tridiagonal matrices derived from real world

applications
=  Chemistry (analysis of molecules)
= Harwell-Boeing Collection (structural engineering, etc)
= SuiteSparse Matrix Collection (FEM analysis, NASA)
= Matrices provided by LAPACK users (some related to bugs)
= Lanczos algorithm without reorthogonalization to provoke
very close eigenvalues

» Software (various versions)
* Flexible input file

Marques et al. (2008). Algorithm 880:
A testing infrastructure for symmetric
tridiagonal eigensolvers. ACM TOMS.

30

% This is a simple input file for STETESTER.
9

%
% Cases 01-04:
%
VALUES % Sets built-in eigenvalue distributions
3 4 % Distribution 3, EIG(i)=COND**(-(i-1)/(N-1))
10 15 % Dimensions of the matrices to be generated

%
% Cases 05-16:
%

%
MATRIX T % Sets built-in matrices

2 3 % Matrix type 2 and 3

20:25 % Dimensions of the matrices to be generated

%
% Cases 17-18:
%

GLUED % Sets glued matrices
2 1 % If 1, set eigenvalues; if 2, set matrix

1 2 3 % Eigenvalue distribution or matrix type
10 11 12 % Dimensions
0.001 0.002 % Glue factors

%

GLUED % Sets glued matrices
1 2 1 % If 1, set eigenvalues; if 2, set matrix
1 2 3 % Eigenvalue distribution or matrix type
10 11 12 % Dimensions
-0.001 -0.002 % Glue factors

%
% Cases 19-20:

%
VALUESF  DATA/T_0010.eig % Eigenvalues read from file 'T10.eig’
MATRIXF T DATA/T_0010.dat % Matrix read from file 'T10.dat’

%
% Tests to be performed. Note that 'ALL' is equivalent to
9

"STEQRV" (calls DSTEQR with compz='v')
% "STEVXA" (calls DSTEVX with RANGE='A")
% "STEVXI" (calls DSTEVX with RANGE='I")
"STEVXV" (calls DSTEVX with RANGE='V')
"STEDCI" (calls DSTEDC with CoMPZ='I')
"STEGRA" (calls DSTEGR with RANGE='A')
"STEGRI" (calls DSTEGR with RANGE='I')
"STEGRV" (calls DSTEGR with RANGE='V')

AR 2R 3R R R R R ¥R

% Also note that no interval was specified (by means of EIGVI, EIGW,
% NRILIU or NRVLWU) so in spite of 'ALL' some tests will be skipped.
%
CALLST ALL
%

% Halfbandwidth of the symmetric matrix to be generated and then
% tridiagonalized. This can save time for big matrices (if smaller
% than 100).

%

HBANDA 100
%
% pbump results in different formats (including Matlab)
%
DUMP LOG T W Z T_MAT W_MAT Z_MAT
%

END




STCollection: eigenvalue distributions

n=180, 20 smallest eigenvalues

cigenvalue

T_Fann_06.eig

-1.107582174359294E+01
-1.107582174359294E+01
-1.107582174359292E+01
-1.107582174359291E+01
-1.107582174359290E+01
-1.107580538638403E+01
-1.107580538638399E+01
-1.107580538638398E+01
-1.107580538638397E+01
-1.107579468129299E+01
-1.107579468129296E+01
-1.107579468129296E+01
-1.107579468129292E+01
-1.107579468129291E+01
-1.107574609356799E+01
-1.107574609356797E+01
-1.107574609356795E+01
-1.107574609356793E+01
-1.107571441013466E+01
-1.107571441013465E+01

T_Fann_06.eig (n=180)

WWM

20 40 60 80 100 120 140
index

160

180

T_Lipshitz_1.eig
n=1000, 20 smallest and largest eigenvalues

-2.6823372031320144e-16
-2.2237154507547389e-16
-2.2204461419491012e-16
-2.2204460492503131e-16
-1.8342609148280882e-16
-1.3899996366291143e-16
-1.1135703515315642e-16
-5.5511152667964514e-17
-4.9656459539928424e-17
-3.6224205091068070e-17
-3.4769060438593381e-17
-2.9457359363955050e-17
-1.8099200983560987e-17
-9.9708593735412647e-18
-4.4639982898565932e-18
-4.1246352014896293e-18
-3.9284577008713904e-18
-3.6526711419576054e-18
-2.2491630371466091e-18
-1.8965391276166353e-18

T

1.0000000000000020e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000031e+00
1.0000000000000031e+00
1.0000000000000033e+00

ipshitz_1.eig (n=1000)

12

0 200 400

index

600 800 1000

31

T_Godunov_1le-2.eig
n=2500, 20 smallest and largest eigenvalues

-9.000099999684682E+02
-9.000099998738725E+02
-9.000099997162141E+02
-9.000099994954936E+02
-9.000099992117126E+02
-9.000099988648727E+02
-9.000099984549761E+02
-9.000099979820255E+02
-9.000099974460236E+02
-9.000099968469744E+02
-9.000099961848813E+02
-9.000099954597482E+02
-9.000099946715800E+02
-9.000099938203817E+02
-9.000099929061586E+02
-9.000099919289162E+02
-9.000099908886612E+02
-9.000099897853999E+02
-9.000099886191389E+02
-9.000099873898861E+02

Eigenvalue

T_Godunov_le-2.eig (n=2500)
=

9.000099873898861E+02
9.000099886191389E+02
9.000099897853999E+02
9.000099908886612E+02
9.000099919289162E+02
9.000099929061586E+02
9.000099938203817E+02
9.000099946715800E+02
9.000099954597482E+02
9.000099961848813E+02
9.000099968469744E+02
9.000099974460236E+02
9.000099979820255E+02
9.000099984549761E+02
9.000099988648727E+02
9.000099992117126E+02
9.000099994954936E+02
9.000099997162141E+02
9.000099998738725E+02
9.000099999684682E+02
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STCollection: eigenvalue distributions

n=180, 20 smallest eigenvalues

cigenvalue

T_Fann_06.eig

prsssnasunnas
H

:-1.107582174359294E+01
:-1.107582174359292E+01
:-1.107582174359291E+01
:-1.107582174359290E+01
:-1.107580538638403E+01
:-1.107580538638399E+01
:-1.107580538638398E+01
:-1.107580538638397E+01
:-1.107579468129299E+01
:-1.107579468129296E+01
:-1.107579468129296E+01
:-1.107579468129292E+01
:-1.107579468129291E+01
:-1.107574609356799E+01
:-1.107574609356797E+01
:-1.107574609356795E+01
:-1.107574609356793E+01
:-1.107571441013466E+01

T_Fann_06.eig (n=180)

WWM

20 40 60 80 100 120 140
index

160

180

T_Lipshitz_1.eig
n=1000, 20 smallest and largest eigenvalues

-2.6823372031320144e-16
-2.2237154507547389e-16
-2.2204461419491012e-16
-2.2204460492503131e-16
-1.8342609148280882e-16
-1.3899996366291143e-16
-1.1135703515315642e-16
-5.5511152667964514e-17
-4.9656459539928424e-17
-3.6224205091068070e-17
-3.4769060438593381e-17
-2.9457359363955050e-17
-1.8099200983560987e-17
-9.9708593735412647e-18
-4.4639982898565932e-18
-4.1246352014896293e-18
-3.9284577008713904e-18
-3.6526711419576054e-18
-2.2491630371466091e-18
-1.8965391276166353e-18

T

1.0000000000000020e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000022e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000024e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000029e+00
1.0000000000000031e+00
1.0000000000000031e+00
1.0000000000000033e+00
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T_Godunov_1le-2.eig
n=2500, 20 smallest and largest eigenvalues
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Eigenvalue
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STCollection: plots of eigenval

ue distributions

Eigenvalue distribution: T_bug_0032_6.eig (n=60)
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Opportunities (w.r.t. software testing)

* (Categorize tests
* Streamline the analysis of results (for publications)

*  Which algorithm is preferable under certain conditions?

* Integration of meaningful tests in the generation of codes

* Choose tests based of data or plot characteristics
* Test of code segments (akin to unit tests)

* Manage versions (e.g. real/complex) instead of
using “extract” (base files)

e Algorithm selection (next slides)

OM: I fed STCollection into https://gitingest.com and
obtained as output something that [ am not sure it
would be much useful for an LLM-based model...

Oba, Tezuka and Hasegawa (2025). Prediction of Iterative Solvers
Convergence Using Pretraining by Natural Images. 27th DaWakK.
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Algorithm Selection: A Poor Man’s Al

20+ years ago &

1) application sends data to Smart Solver
2) Smart Solver selects the algorithm

3) Smart Solver sends solution back

4) Smart Solver updates the database

Application
Ax = Ax

[ SP(dense) [N SP/SM (medium) [HMl OL/SM [ Clay
== oL [ Abutment —— Pile group & Super structure

Humboldt Bay, Middle Channel Bridge

50

-50

| 1 L L
200 400 600 800
Units: Meters

L
-200

NERSC System Utilization
vase | (Aug’17 - Jul'18)

Other

« electronic structure DFT
eigenvalue problems ~
25% of the workload

* 10 codes > 50% of the
workload

« 35 codes > 75% of the
workload

« Over 600 codes
comprise the remaining
25% of the workload

ML
ab
nimrod
gtc
blast ChemboCrunch

GYRO

SAURON

Espresso
Compo_Analysis
CESM

ATLAS
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parameters: n, neig, block
size, tolerance, approximate
x’s, As close to o; restart...

Smart Solver

database (performance, accuracy ...)

parameter

1 2

algorithm

* Matrix properties?
* Which eigenvalues?

* Eigenvectors?

Given a set of parameters:

* How to select an algorithm?

* How to update the database?
Is the user allowed to bias the selection?
How to package the algorithms?

What to do in case of failure?
What to use as database?

Demmel, Li and Marques (2004). An Intelligent and Scalable
Sparse Eigensolver Toolkit for High-End Computing. Submitted to
NSF.

Kajiyama et al. (2006). SILC: A Flexible and Environment-
Independent Interface for Matrix Computation Libraries, LNCS
3911.

Sakurai et al. (2013). A Sparse Matrix Library with Automatic
Selection of Iterative Solvers and Preconditioners, Procedia
Computer Science 18.

Yu et al. (2018). ELSI: A unified software interface for Kohn—Sham
electronic structure solvers. Computer Physics Communications.



Question to ChatGPT

Given a very large, sparse, real symmetric matrix, for which about 5% of the
smallest eigenvalues and corresponding eigenvectors need to be computed,
which eigenvalue solvers could be used for that task, considering accuracy and
speed ?

Answer (next slides):

 summary of good options

e practical recommendations

* implementation suggestions / libraries
e quick decision tree
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Answer: summary of good options

Block Lanczos / Krylov-Schur (ARPACK / ARPACK-NG / SLEPc / PRIMME)
—  How: Krylov subspace method with restarting; use block variants when many eigenpairs required.
—  Pros: Robust, well-tested, good for relatively small numbers of eigenpairs (hundreds - low thousands). Mature libraries (ARPACK-NG, SLEPc, PRIMME).
—  Cons: Orthogonalization cost grows with number of wanted vectors; memory ~ O(n-m) with m = block/subspace size. Can be slow if you need many
(tens of thousands) eigenpairs.
LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient)
—  How: Block method that uses a few vectors per iteration and accepts preconditioning.
—  Pros: Excellent when a good preconditioner is available (AMG, ILU, domain decomposition). Good scaling to many eigenpairs if block size chosen well.
Low communication cost for parallel runs. Implementations: BLOPEX, SLEPc, scipy.sparse.linalg.lobpcg.
—  Cons: Needs good preconditioner for speed; still needs reorthogonalization.
Davidson / Jacobi-Davidson (block versions)
—  How: Subspace expansion with a correction equation solved approximately (often with preconditioning).
—  Pros: Very effective for interior or clustered eigenvalues, and when good preconditioners exist for the correction equation. Good for many physics
applications. Implementations: PRIMME (Jacobi-Davidson), SLEPc.
—  Cons: Each step may require inner linear solves; implementation complexity higher.
Shift-invert strategy (with any Krylov method)

—  How: Transform smallest eigenvalues to largest by solving (A - JI)_lx with o near target (here ¢ = 0). Then run Lanczos/Arnoldi on the transformed
operator.
- Pros: Very fast convergence to extreme or interior eigenvalues.
—  Cons: Requires solving large sparse linear systems efficiently each iteration — i.e., a fast/robust direct solver or preconditioned iterative solver
(multigrid/AMG, ILU) is essential. Memory and factorization cost can be the limiter.
Spectrum-slicing / FEAST / Contour integration methods
—  How: Slice the spectral interval containing the wanted eigenvalues into subintervals and solve many independent problems (often via contour integrals
or rational filtering).
—  Pros: Highly parallel (each slice independent), excellent when you want a large fraction of the spectrum (like 5%). FEAST and spectrume-slicing libraries
work well for thousands = tens of thousands of eigenpairs.
—  Cons: Each slice typically requires solving several linear systems (shifted matrices), so good linear solvers/preconditioners are again required.
Polynomial/Chebyshev filtering + subspace iteration (filter-diagonalization)
—  How: Apply polynomial filter that amplifies the wanted part of spectrum, then perform block subspace iterations/orthonormalization.
—  Pros: Avoids inner linear solves (cheaper per apply if A is sparse); very suitable for computing many eigenpairs and for GPU/parallel architectures. Good
for large fractions of spectrum.
—  Cons: Need to design filters (degree vs cost) and handle orthogonalization overhead.
Randomized / approximate methods
—  How: Randomized subspace projection plus refinement (useful when only approximate eigenpairs are acceptable).
—  Pros: Very fast and memory-friendly for approximations.
—  Cons: Not ideal if high accuracy for many smallest eigenpairs is required.
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Answer: summary of good options

. Block Lanczos / Krylov-Schur (ARPACK / ARPACK-NG / SLEPc / PRIMME)
—  How: Krylov subspace method with restarting; use block variants when many eigenpairs required.
—  Pros: Robust, well-tested, good for relatively small numbers of eigenpairs (hundreds - low thousands). Mature libraries (ARPACK-NG, SLEPc, PRIMME).
—  Cons: Orthogonalization cost grows with number of wanted vectors; memory ~ O(n-m) with m = block/subspace size. Can be slow if you need many
(tens of thousands) eigenpairs.
. LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient)
—  How: Block method that uses a few vectors per iteration and accepts preconditioning.
—  Pros: Excellent when a good preconditioner is available (AMG, ILU, domain decomposition). Good scaling to many eigenpairs if block size chosen well.
Low communication cost for parallel runs. Implementations: BLOPEX, SLEPc, scipy.sparse.linalg.lobpcg.
—  Cons: Needs good preconditioner for speed; still needs reorthogonalization.
. Davidson / Jacobi-Davidson (block versions)
—  How: Subspace expansion with a correction equation solved approximately (often with preconditioning).
—  Pros: Very effective for interior or clustered eigenvalues, and when good preconditioners exist for the correction equation. Good for many physics
applications. Implementations: PRIMME (Jacobi-Davidson), SLEPc.
—  Cons: Each step may require inner linear solves; implementation complexity higher.
. Shift-invert strategy (with any Krylov method)

—  How: Transform smallest eigenvalues to largest by solving (A - JI)_lx with o near target (here ¢ = 0). Then run Lanczos/Arnoldi on the transformed
operator.
- Pros: Very fast convergence to extreme or interior eigenvalues.
—  Cons: Requires solving large sparse linear systems efficiently each iteration — i.e., a fast/robust direct solver or preconditioned iterative solver
(multigrid/AMG, ILU) is essential. Memory and factorization cost can be the limiter.

i . Spectrum-slicing / FEAST / Contour integration methods i
i —  How: Slice the spectral interval containing the wanted eigenvalues into subintervals and solve many independent problems (often via contour integrals i
| or rational filtering). i
i —  Pros: Highly parallel (each slice independent), excellent when you want a large fraction of the spectrum (like 5%). FEAST and spectrume-slicing libraries i
| work well for thousands = tens of thousands of eigenpairs. i
i —  Cons: Each slice typically requires solving several linear systems (shifted matrices), so good linear solvers/preconditioners are again required. i
P Polynomial/Chebyshev filtering + subspace iteration (filter-diagonalization) i
i —  How: Apply polynomial filter that amplifies the wanted part of spectrum, then perform block subspace iterations/orthonormalization. i
i —  Pros: Avoids inner linear solves (cheaper per apply if A is sparse); very suitable for computing many eigenpairs and for GPU/parallel architectures. Good i
| for large fractions of spectrum. i
i —  Cons: Need to design filters (degree vs cost) and handle orthogonalization overhead. i
i . Randomized / approximate methods i
i —  How: Randomized subspace projection plus refinement (useful when only approximate eigenpairs are acceptable). i
] —  Pros: Very fast and memory-friendly for approximations. i
i —  Cons: Not ideal if high accuracy for many smallest eigenpairs is required. !



Answer: practical recommendations

* If “5%” corresponds to a modest number (< a few thousand eigenpairs) and you

have moderate memory:
— Use block Krylov (ARPACK-NG, PRIMME) or LOBPCG with a good preconditioner.
— If eigenvalues are tightly clustered or convergence is slow, use Jacobi-Davidson or shift-invert (if you
can solve linear systems fast).
 If “5%” is large (many thousands — e.g. n=1e6 - 50k eigenpairs):
—  Prefer spectrum-slicing / FEAST or Chebyshev polynomial filtering + block subspace. These scale
better when you need a big chunk of the spectrum and are embarrassingly parallel over slices or

frequency intervals.
— Shift-invert becomes expensive at this scale unless you have an extremely fast parallel direct solver or

extremely good preconditioners.
* If you have a powerful preconditioner (AMG, domain-decomp):
— LOBPCG or Jacobi-Davidson (block) + preconditioning is often the fastest and most memory-efficient
route.
e If you need to run on distributed memory (MPI) or GPUs:
— Use parallel packages: SLEPc (with PETSc), PRIMME (has parallel support), or FEAST with parallel
linear solvers. For GPU-focused workflows, look at libraries that support GPU linear solves for the
shift-invert inner solves.
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Answer: implementation suggestions / libraries

* ARPACK-NG — classic, but single-vector ARPACK struggles when many
eigenpairs are needed; use block-enabled variants where available.
 PRIMME — modern, high-performance; supports Davidson/JD/GD and
preconditioning; good for many practical cases.

* SLEPc (on top of PETSc) — rich set of methods (Krylov-Schur, LOBPCG,
Jacobi-Davidson, spectrum slicing), MPI-ready.

* FEAST — contour integration / spectrum slicing approach.

 BLOPEX/LOBPCG — simple, effective with preconditioning (integrated
into SLEPc/Trilinos).

* Trilinos/Anasazi and ScaLAPACK for large parallel workflows.
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Answer: implementation suggestions / libraries

* ARPACK-NG — classic, but single-vector ARPACK struggles when many
eigenpairs are needed; use block-enabled variants where available.
 PRIMME — modern, high-performance; supports Davidson/JD/GD and
preconditioning; good for many practical cases.

* SLEPc (on top of PETSc) — rich set of methods (Krylov-Schur, LOBPCG,
Jacobi-Davidson, spectrum slicing), MPI-ready.

* FEAST — contour integration / spectrum slicing approach.

 BLOPEX/LOBPCG — simple, effective with preconditioning (integrated
into SLEPc/Trilinos).

_________________________________________________________________________________________________________________________________
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Answer: quick decision tree

* Small - moderate k (hundreds): Block Lanczos / PRIMME / ARPACK-
NG.

 Moderate - large k and have good preconditioner: LOBPCG or
Jacobi-Davidson (block) with preconditioning.

* Large k (5% large) or extreme scale: spectrum slicing / FEAST or
Chebyshev filtering + block subspace.

* |f fast direct solves available: use shift-invert + Krylov/ID for fastest
convergence.
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Question to ChatGPT

Are eigenvalue problems solved in Al ?

Yes, eigenvalue problems are indeed solved in artificial intelligence (Al) algorithms and large language models (LLMs), though the way they appear may
differ from traditional contexts (like solving Ax = Ax) to more generalized linear algebra and optimization frameworks. Here are the key areas where
they arise:

1. Principal Component Analysis (PCA) — Dimensionality Reduction
— Where: Used in preprocessing, feature reduction, data visualization, and sometimes in embeddings.
— Role: PCA involves computing the eigenvalues and eigenvectors of the covariance matrix of data to find directions (principal components) of maximum variance.
— References: 1) Jolliffe, I. T. (2002). Principal Component Analysis. Springer. 2) Murphy, K. (2012). Machine Learning: A Probabilistic Perspective (Chapter 12).

2. Spectral Clustering — Unsupervised Learning
— Where: Used in clustering tasks where the data has non-convex structures.
— Role: Involves computing the eigenvectors of the Laplacian matrix derived from the data graph. These eigenvectors are then used for clustering in a lower-dimensional space.

— References: 1) Ng, Jordan, and Weiss (2002). "On spectral clustering: Analysis and an algorithm." NIPS. 2) von Luxburg, U. (2007). "A tutorial on spectral clustering." Statistics and
Computing.

3. Word Embeddings & Latent Semantic Analysis (LSA)
— Where: Early NLP methods and still foundational for understanding representations.
— Role: Singular Value Decomposition (SVD) — a close relative to eigenvalue decomposition — is used in LSA to reduce the dimensionality of term-document matrices.

— References: 1) Deerwester et al. (1990). "Indexing by latent semantic analysis." JASIS. 2) Turney & Pantel (2010). "From frequency to meaning: Vector space models of
semantics." JAIR.

4. Optimization Problems in Deep Learning
— Where: In training neural networks, eigenvalues of the Hessian matrix (second derivative of the loss) provide insight into curvature and convergence.
— Role: Understanding the spectrum of the Hessian can inform learning rate schedules, saddle point avoidance, and generalization properties.

— References: 1) Sagun, Bottou, & LeCun (2017). "Eigenvalues of the Hessian in deep learning: Singularity and beyond." arXiv:1611.07476. 2) Ghorbani, Krishnan, & Xiao (2019). "An
Investigation into Neural Net Optimization via Hessian Eigenvalue Density." ICML.

5. Transformers and Attention: Low-rank Approximations
— Where: Efficient transformers often use low-rank matrix approximations to speed up attention computations.
— Role: These approximations can involve SVD or eigen decompositions to approximate attention matrices (e.g., in Linformer, Performer).
— References: 1) Wang et al. (2020). "Linformer: Self-Attention with Linear Complexity." arXiv:2006.04768. 2) Choromanski et al. (2021). "Rethinking attention with performers."
ICLR.

6. Graph Neural Networks (GNNs)
— Where: Applied in recommendation systems, molecule modeling, knowledge graphs.
— Role: Many GNNs rely on spectral graph theory, where eigenvalues of the graph Laplacian define convolutional operations.

— References: 1) Kipf & Welling (2017). "Semi-Supervised Classification with Graph Convolutional Networks." ICLR. 2) Defferrard et al. (2016). "Convolutional neural networks on
graphs with fast localized spectral filtering."
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Question to ChatGPT

Are eigenvalue problems solved in Al ?

Yes, eigenvalue problems are indeed solved in artificial intelligence (Al) algorithms and large language models (LLMs), though the way they appear may
differ from traditional contexts (like solving Ax = Ax) to more generalized linear algebra and optimization frameworks. Here are the key areas where
they arise:

1. Principal Component Analysis (PCA) — Dimensionality Reduction
— Where: Used in preprocessing, feature reduction, data visualization, and sometimes in embeddings.

— Role: PCA involves computing the eigenvalues and eigenvectors of the covariance matrix of data to find directions (principal components) of maximum variance.
— References: 1) Jolliffe, I. T. (2002). Principal Component Analysis. Springer. 2) Murphy, K. (2012). Machine Learning: A Probabilistic Perspective (Chapter 12).

Application Area Eigenvalue Connection m

PCA Covariance matrix eigendecomposition Feature reduction, NLP
Spectral Clustering Graph Laplacian eigenvectors Clustering, vision
Latent Semantic Analysis SVD (related to eigenvalue problems) NLP
Optimization in Deep Nets Hessian eigenvalues Training diagnostics
Efficient Transformers Low-rank matrix approximations (SVD) Attention speed-up

Graph Neural Networks (GNNs) Spectral filters using eigenvalues of Laplacian  Graph data modeling

Investigation into Neural Net Optimization via Hessian Eigenvalue Density." ICML.

5. Transformers and Attention: Low-rank Approximations
— Where: Efficient transformers often use low-rank matrix approximations to speed up attention computations.
— Role: These approximations can involve SVD or eigen decompositions to approximate attention matrices (e.g., in Linformer, Performer).
— References: 1) Wang et al. (2020). "Linformer: Self-Attention with Linear Complexity." arXiv:2006.04768. 2) Choromanski et al. (2021). "Rethinking attention with performers."
ICLR.

6. Graph Neural Networks (GNNs)
— Where: Applied in recommendation systems, molecule modeling, knowledge graphs.
— Role: Many GNNs rely on spectral graph theory, where eigenvalues of the graph Laplacian define convolutional operations.

— References: 1) Kipf & Welling (2017). "Semi-Supervised Classification with Graph Convolutional Networks." ICLR. 2) Defferrard et al. (2016). "Convolutional neural networks on
graphs with fast localized spectral filtering."
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Summary — Al & HPC Synergies (at a glance)

 Within reach

— Summary and generation of specific education/training material, help
with the selection of education/training topics, etc.
— Support for code translation and generation of specific kernels
— Support for algorithm selection (with some fine-tuning)
* Wish list
— Code generation integrated with performance models
— Support for interpretation of results (publications)
— Generation/selection of tests/benchmarking
— Support for debugging

41



Summary — Al & HPC Synergies (at a glance)

 Within reach

— Summary and generation of specific education/training material, help
with the selection of education/training topics, etc.
— Support for code translation and generation of specific kernels
— Support for algorithm selection (with some fine-tuning)
* Wish list
— Code generation integrated with performance models
— Support for interpretation of results (publications)
— Generation/selection of tests/benchmarking
— Support for debugging

-l
O“ ...

s’ ’,‘ Andrej Karpathy’s talk at Al Startup School (Y Combinator):
-
@ 5 * keep Al on a leash (autonomy slider)
%
A )

e generation and verification

R e

= +

41



Thank you !



