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ChatHPC, What is that?

Infrastructure:
e A CLI Python library on top of:
— Code Llama, PyTorch, and LoRA
e The ChatHPC library makes:
— Fine-tuning, Testing, Refinement, Merge, and Inference
Ecosystem:

A collection of Al assistants leveraging existing
HPC efforts for multiple domains:

- Programming Models, Math Libraries, /0, Tooling, etc.
e And priorities:

— Parallelization, Portability, Optimization, Evaluation, etc.
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ChatHPC CLI:

1| $ chathpe train Finetun

$ chathpe verify

\
| $ chathpe test lest
1| $ chathpe run Interacti

Interactive Run Session:

I| $ chathpe ()> /context

Context: Introduction to Kokkos

| $ chathpe (Introduction to Kokkos)> What

LayoutLeft refer

s column-major layout where

is LayoutLeft?
consecutive entries in

the same column of a 2-D array are contiguous in memory.

ChatHPC Library
>

() Base Model
(Code Llama)

(1) Fine-Tuning

(B) Al Assistants (Adapters)

s

ChatMAGMA

(1) ChatHPC Merge Model +
Model Adapters

ata

ChatHPC for
Kokkos
Programming
ChatlRIS Systems
ChatPort
ChatADIOS2 l{e]

Performance

ChatTAU Profilers

& Expert-in-the-loop
e

(C) Testing
Da

earnin

(3) Refinement
(Fine-Tuning)




Design and Implementation

A simple 3-step iterative process:

1. Fine-tuning -> Al assistant (optimizers)
— Training Data
— The better the data the better the model
— It is more about quality than quantity

2. Testing -> Learning gaps
— Testing Data != Training Data

— Testing Data may contain question about non-fined-
tuned capabilities

3. Refinement -> More capable Al assistants
— Expert-Supervised Refinement Data

Al assistants can be merge into a single LLM:
ChatHPC model
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ChatHPC Library

(B) Al Assistants (Adapters) & Expert-in-the-loop
—
3 ChaltPC for T Tesig
D
Code Llama gl Eliine)
( ) ChatIRIS St
(1) Fine-Tuning .
ChatPort D o™
(A)Training P
Data \ -
ChatADIOS2 l{e]
- (3) Refinement
(Fine-Tuning)
ChatMAGMA
(I ﬁl;ztl-llPC Mergs Model + s »
e Adapters (A) Training (E) Refinement
Performance
ChatTAU e Data

[

{ " question®: "Can yo
zglobal void ste

float «u_new flo

u translate this HIP
ncil (int n, float dx,
at «+f) |

code to Kokkos?
float dy,

float «u,

threadlidx . x;

-IJ
SEBIGBIE

int i = blockldx.x « blockDim.x +
int j = blockldx.y « blockDim.y + threadldx .y
if(i > 0&& i < n-1 && j > 0 & j < n-1){
unewlil[j] = 0.25 « (ufi-1][j] + ulil{j
+ uli][j-1] + wfi+1][j] +
|
s
"context”: "HIP to Kokkos tranmslation”,
‘answer”:
"Kokkos :: parallel_for (\" stencil \”
Kokkos : : MDRangePolicy <Kokkos : : Rank<2>>
({1, 1}, {n-1, n-1}),
KOKKOS LAMBDA( const int i, const int j)
unew(i,j) = 0.25 « (u{i-1,j) + u{i,j+1)

j-1 « u{i+1,j)

TR N 9 #ERE e O
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Analysis

« Codellama 7B [13GB] « Data
—  ChatGPT 40 1.8T -> 257x less parameters —  Synthetic data in most of the Al-assistants
« Al assistants (~100MB) created (supervised learning)
« Training data (~KB) ) ieml,e'st,
, . pplications
° Eyaluatlgn data (~KB) . Scripts
* Fine-tuning: —  Applications:
—  No more than 15 min. in a one NVIDIA 2x «  Dense/Sparse Linear Algebra, PDEs, CFD, Al,
H100 node Image Processing, ...
e« FEvaluation -  Expert-in-the-loop
— % of prompts (evaluation data) passed . If we want Al responding as expert, we need
: . - data provided by experts
—  Evaluation data is different to training data
) Create data
« Compare against  Identify learning gaps
— 7 billion parameter Meta’s Code Llama base —  Minimize data demanding

model (no fine-tuning)

— 1.8 trillion parameter OpenAl’s ChatGPT 40
model

—  Self-learning
— Reinforcements, if necessary (learning gaps)
—  Which targets are more demanding?

—  Not use all data (training data) we can use
%OAK RIDGE
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ChatHPC for Kokkos ¥OAKRIDGE  Ey (] ~Z=

Model/Context CodeLlama ChatHPC for Kokkos ChatHPC for Kokkos ChatGPT Translate the next CUDA code to Kokkos:

Initial Refinement 1. ___.gltt)b.al__u\:oiddls;lol(inlbrl:. {:Zat .va]n‘-,ka[;‘ -y,'ﬂoal sresult) |
Documentation 9.5% 89.0% - 81.0% el e
; update = x[i] « y[i];
Installation 27.2% 78.0% - 45.5% [ e ataicty ALk
i
Development 0.0% 85.0% - 15.1%
ChatKokkos output:
Parallelization 0.0% 45.5% 90.9% 66.7% [ Kekken 7 paraliel s cduce (SIZE .
2 KOKKOS_ LAMBDA(int i, float &update)|
Portability 0.0% 95.6% 85.9% 33.4% [ PRdntessn e R ) :
CUDA* 0.0% 53.2% 87.2% 41.3% e R
OpenACC* 0.0% 98.7% 83.5% 31.2% —
Kokkos: A C++ API portable library for parallel programming
o 102 —— CUDA (Input) %% 2
Parallelization and Portability : —
£ 1074 [ 100
E
 Training (HPC and scientific kernels)
— BLAS, Sparse, Euler methods, Conjugate Gradient, LBM, Al convolutions T e s W6 @ 1
e Learning gaps = peedun |
— Sparse Computation and Iterative Solvers + =
— 12% more data E‘ —_— Sequen:ial cod)e(lnput) j::é'
1077 Kokkos (Ouput ﬁ
No CUDA and OpenACC codes used for fine-tuning =
% OAK RIDGE Bt e (v e o 1058
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ChatADIOS2

Model/Context CodeLlama ChatADIOS2 ChatADIOS2 ChatGPT
Intial Refinement
Introduction 0.0% 77.0% 100.0% 33.3%
Variable Definition 0.0% 50.0% 100.0% 33.3%
Data Compression 0.0% 25.0% 100.0% 0.0%
Parallelization 0.0% 0.0% 100.0% 100.0%

ADIOS2: A portable and HPC I/0 library
Capabilities:

 Q&A on API, Variable definition, Compression, and
Parallelization (serial POSIX I/0 to ADIOS2)

Learning gaps:

* Wrong use of ADIOS2 API
— Local and global N-dimension variables
— Compression factor (parameters)
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6 } :
| bpWriter . Close () ; DENERS

adios2:: ADIOS adios("adios2_config.yaml", mpiComm) ;

2| adios2::10 10 = adios.DeclarelO (" WritelO");

adios2 :: Variable =double = warl =
io. DefineVariable =double =( "U" ,shape , start , count);

| adios2 :: Operator Zfp =

adios . DefineOperator ("Zfp" ., adios2::ops::LossyZFP);

9| adios2 :: Engine bpWriter =

io.Open("output.bp”, adios2::Mode:: Write) ;
while( run_simulation ){

bpWriter . BeginStep () :

bpWriter . Put<double =(varU, U.data()):

I:-rl;.r-\'v'riler .EndStep () ;

¥ 04K RIDGE
Natinal Labor o

200 1o
Speedup '
175
15.0
150
125
125
) o
o 100 | POSIX (Input) F10.0 %
£ - ADIOS2 (Ouput) o
Eos r7.5 @
501 5.0
= )
o
1816 32 64 128 256
proc
Compression Rate
102 4
r7.4
)
o T
3 &
14
= 10 =
g = ADIOS2 (Input) .%
n ADIOS-Zfp (Ouput) i
(] =
@ F7.0 E’
0O 10° 5
o
6.8
1071
0 50 100 150 200 250

npocs

7| varU. AddOperation(Zfp .{{ adios2 ::ops:: zfp :: key :: rate , "9 }}) ;
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ChatlRIS

Model/Context CodelLlama ChatlRIS Intial ChatGPT

Documentation 0.0% 95.0% 70.0%
OpenMP -> IRIS 0.0% 82.5% 10.0%
CUDA -> IRIS 0.0% 90.0% 50.0%
HIP -> IRIS* 0.0% 81.6% 10.0%

IRIS: A Task-based programming model for heterogeneous computing

e Taskification of applications
— Deploy applications on any architecture using multiple devices

o Portability
— OpenMP, CUDA, HIP to IRIS task code

e Training
— Basic applications (AXPY)

e Testing
— More complex applications with multiple kernel invocations

 No refinements were needed

e HIP was not used for fine-tuning
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Translate the next CUDA code to IRIS:

21 X

1| Z
| for (int i = 0; i < SIZE; i++) { X[i] = i; Y[i] = i;}
o| cudaMalloc ((void++)&d x, SIZE . sizeof(float));

1| alpha = 2.0:
= (float +) malloc(SIZE . sizeof(float));
Y = (float +) malloc(SIZE . sizeof(float)):
= (float «) malloc(SIZE . sizeof(float));

cudaMalloc ((void«+)&d_y, SIZE . sizeof(float)):
cudaMalloc ((void++)&d_z, SIZE .« sizeof(float)):
Initializatio f arrays

cudaMemepy(d_x, x, SIZE. sizeof(float), cudaMemcpyHostToDevice);

t| cudaMemepy(d_y, y, SIZE. sizeof(float), cudaMemcpyHostToDevice);
i2| int threads = 512;
11| int blocks = floor(SIZE/threads) + 1;
11| saxpy<<<blocks , threads=>>(alpha, d x, d_y. SIZE);
.| cudaDeviceSynchronize ()

sdot<<<blocks ., threads>>>(d_z. d_x, SIZE);
cudaDeviceSynchronize ()
cudaMemepy(z, d_z, SIZE + sizeof(float), cudaMemcpyDeviceToHost)

| cudaFree(d_x):

cudaFree(d_y):

21| cudaFree(d_z):
2| free(X);
3| free(Y);
| free(Z);

ChatlRIS output:

Architecture —agnostic IRIS task code

2| alpha = 2.0:

i| iris_init(&arge, &argv, 1):

] iris_mem iris_x:

| x = (float ) malloc(SIZE . sizeof(float));

iris_data_mem_create(&iris_x, x, SIZE « sizeof(float));
iris_mem iris_y:

y = (float +) malloc(SIZE « sizeof(float));
iris_data_mem_create(&mem Y, Y, SIZE . sizeof(float));
iris_mem iris_z;

1|z = (float +) malloc(SIZE « sizeof(float));
2| iris_data_mem_create(&mem_z, z, SIZE + sizeof(float));

14 irisr_'gra‘ph' .graph

iris_graph_create(&graph);
iris_task saxpy_task;
iris_task sdot_task:

iris_task _create(&saxpy_task);

| iris_task_create(&sdot_task):

void. saxpy_params[3]={&alpha, &iris_x , &iris_y }:

21| int saxpy_params_info [3]={sizeof(A), iris_w, iris_r};
2| iris_task_kernel(task0, “saxpy”, 1, NULL, &SIZE, NULL, 3,

saxpy_params , saxpy_params_info);

21| void+ sdot_params[2]={&iris_z . &iris_x}:
1| int sdot_params_info [2]={iris_w , iris_r};

iris_task_kernel(taskl, “sdot”, 1, NULL, &SIZE, NULL, 2,
sdot_params, sdot_params_info);
iris_graph_task(graph, saxpy task ., iris_default , NULL);
iris_graph_task(graph, sdot_task, iris_default , NULL);
iris_graph_submit(graph , iris_any ,1):

2 free(X);

free(Y);
free(Z);
iris_finalize ():




ChatMAGMA

Model/Context CodeLlama ChatMAGMA ChatMAGMA ChatGPT

Translate the next Intel MKL code to MAGMA:

Intel MKL (CPU-only) dgetrf code

|nitia| Refinement 2| double +A=(double +)mkl _malloc(n«n+sizeof(double) ,64);

i| int «ipive(int «)mkl_malloc(n«sizeof(int) ,64); :.:""‘\", 1

LaPACKE_dgetrf(LaPACK_ROW_MAJOR,n.n A.n, ipiv);

MKL -> MAGMA 0.0% 37.5% 93.0% 0.0% | mki_free (a);

mkl_free(ipiv):

CUBLASISOI"er -> MAG MA 0 0% 50 O% 96‘ 5% O 0 O% Translate the next NVIDIA cuSolver code to MAGMA:

Nt

g

1 NVIDIA cuSolver (GPU-only) dgetrf code
hipBLAS/Solver -> MAGMA 0.0% 45.3% 95.3% 0.0%  |int tworkeo
. . . | int -dipi\:;
MAGMA: A portable (CPU+GPU) BLAS and LAPACK library with +400 routines e e,
7] cusolverDnCreate(&handle) ;
Capabilities: | Eoiatyesn D gtet bureesSize (handle 1 n i w S THoEES)
cudaMalloc (( void +«+«)&dA ne«n«sizeof(double)):
1| cudaMalloc (( void «++)&dwork ,sizeof (double)«Iwork);
| cudaMalloc (( void «+)&dipiv , nesizeof(int));

Porting of vendor (arch)-specific applications to MAGMA 1| cudaMalloc ((veld --)&dinfo sizeof (int));

| cudaMemcepy (dA hA nen+sizeof (double) ,cudaMemcpyHostToDevice ) ;

_ Support for heterogeneous (CPU+ GPU) Computlng ;| cusolverDnDgetrf(handle ,n,dA, n,dwork, dipiv ,dinfo);

o| eudaMemcpy (hA . dA n«n.«sizeof (double) ,cudaMemcpyDeviceToHost ) :
7| cudaFree (dA) ;
¢| cudaFree (dwork) ;

Training /| cudaFree(dipiv);

cudaFree(dinfo);

—  Well known BLAS (dgemm, dtrsm) and LAPACK (dgetsv, dpotrf) for s it amesriayyhandie)
double precision

ChatMAGMA output:

TeStlng 1 MACMA (CPU+GPU) dgetrf code

magma_queune_t queue;
. . i| magma_device_t cdev;
— Rest of BLAS and LAPACK for other precisions - Zig'.,“,i"‘:i“ui"‘f;‘;‘ii‘(’iﬁj .
: bt abh: o ’
Learning gaps: ittt aies
. . L. /| magma_int_t info;
- MAGMA-specific data types (queues) for different precisions el con (el
2| magma_imalloc_cpu(&ipiv ,n):
- 51 .72% eXtra data 3 maima:dsctma;riz(:l,nl?h.k,nTdA,n,qucuc):
| magma_dgetrf_gpu(n,n,dA n, ipiv &info);
5| magma_dgetmatrix(n,n,dA n . hA n. queue):

No AMD math libraries codes were used for fine-tuning d s eyl
4| magma_free_cpu(ipiv);
%OAK RIDGE ' magma:quc;cfdc(stl:oy:qucue):

National Laboratory




ChatPORT(ing)

=)}
o

Training Set #Kernels Kernels 50 - -
3 L.
} ) T 40+ ___.--.-"":""-
1 5 accuracy, geodesic, Ir, maxpool3d, perplexity E | == -
F 30 - - e ChatPORT: CUDA to OpenMP
2 10 damage, knn, heat2d, laplace3d, md “ —¢ ChatPORT: CUDA to SYCL
50 g Code LLama: CUDA to OpenMP
. bV .
3 15 advCubatureHex3D, backprop, channelShuffle, Ir, meanshift " Code LLama: CUDA to SYCL
o0+ e
D o o 2 . a : 0
4 22 chemv, clenergy, pathfinder, pointwise, swish, stddev, tissue e ol muber of kemele
o > 3 3

Training Sets

 Create an Al assistant for code portability from vendor-specific models (e.g., CUDA) to SYCL and
OpenMP-offloading
« Data is provided by HeCBench
— Training:
« 4 different data sets with (5, 10, 15, and 22) kernels from multiple different domains
— Testing
e 59 CUDA kernels to be ported to OpenMP-offloading and SYCL

%OAK RIDGE
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Remarks

Assistant Code Llama Initial Extra Data Refinement ChatGPT
ChatHPC for Kokkos 7.34% 70.51% 12.33% 85.75 48.34%
ChatADIOS2 0.00% 40.87% 37.50% 100.00% 25.0%
ChatMAGMA 0.00% 44.26% 51.72% 94.93% 0.00%
ChatlIRIS 0.00% 87.29% - - 35.00%
ChatPort 2.54% 36.44% 77.27% 79.66% 79.66%

 New HPC-specific capabilities on top of Code Llama across different HPC domains
— Programming models, 1/0, math libraries, tooling, and runtimes

And tasks:
— Parallelization, portability, performance analysis, scalability, etc.

 Provide higher levels (of up to 90% higher) of trustworthiness than ChatGPT quickly with modest
resources

— Increase data-size (expert-in-the-loop) during refinement learning has a higher impact on correctness

« More data (prompts) for testing than for training data

— Testing data contains prompts about non-fine-tuned capabilities
%OAK RIDGE
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Future Work

%

ChatMPI
— A ChatHPC Al-assistant for MPI parallelization
e 4x speedup w.r.t. MPI code generated by ChatGPT-5

3 Pillars

— Multimodality
o Simplify the interaction with Al for HPC domains

— Reasoning

SCA2026

Supercomputing Asia

»
Gathering the Best of HPC in Asia

» Generate highly optimized HPC codes across domains and technologies

— Agentic
e Connect HPC and Al for complex problems

OAK RIDGE
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Resources and Community

[ ChatHPC prOJeC't: ChatHPC Home News Q
https://ornl.github.io/ChatHPC/

ChatHPC

® M e et I n g S . ChatHPC Application is the base CLI toolchain and Python API for

working with and training models for ChatHPC.

— We organize a community meeting once
@ month.

— Join us!

 Workshops:
— LLM4HPC (co-located with ISC-HPC):

https://ornl.github.io/events/lim4hpc2025/
— LLM4HPCAsia (collocated with SCA/HPC Asia)

SC'25 Artifact Repository: ChatHPC for
Kokkos

This repository holds the artifacts for the ChatHPC SC’25 submission.
Contained in this repo is the ChatHPC Library and corresponding CLI application and the
Kokkos training and verification datasets used to train and validate ChatHPC for Kokkos.

pre—
https://ornl.github.io/events/lim4hpcasia2026/ :_tﬁd =
e

{.
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Observations (Things to think about)

* Fine-tuning e Expert-in-the-loop
— Very effective, if you have the data — Recommendable for domain-specific LLMs
e Trustworthiness o Accessibility
— You can elevate trustworthiness (BTW: better — One NVIDIA GPU (better if you have 2), data (~KB),
than ChatGPT) and 15 minutes
« Overfitting o Simplify prompting
— Is that a problem for domain-specific Al — No prompt engineering, more productive, non-experts
assistants? can generate expert level responses

Self-learning Impact on HPC

— Train on simple problems and let LLMs to deal — Created capabilities for programming models, 1/0,
with more complex problems math libraries, performance tools, ...
— Take advantage from similarities (similar — Help our community to use the HPC tools we have
patterns) today
» Synthetic or real data? * Leveraging HPC efforts
— Why not both? — ChatHPC benefits from the big effort made during
last years

%OAK RIDGE

National Laboratory



Use ChatHPC!
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ChatHPC:

Building the foundation
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