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Oak Ridge Leadership Computing Facility 2009-2021
from Petascale to Exascale

ORNL successfully delivered a string of #1 Leadership Computers

The previous graph has looked the same for every generation
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Post-Exascale Era - Al Supercomputing Era

* Announcement by Oak Ridge National Lab and Argonne National Lab

ORNL, AMD and HPE to deliver DOE’s newest
Al supercomputers: Discovery and Lux

The next evolution in leadership-class artificial intelligence
supercomputing systems

October 27, 2025
Last updated: October 27, 2025

% Discovery: Pushing Beyond Exascale (Y
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Computing and Computational Sciences Directorate

NVIDIA and Oracle to Build US Department of
Energy’s Largest Al Supercomputer for Scientific
Discovery

Bold US Investment of 100,000 NVIDIA Blackwell GPUs Kickstarts Era of Agentic Al-
Powered Science at Argonne National Laboratory for Public Researchers

October 28, 2025
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Genesis Mission - Al-for-science program

Executive Order, November 24

Manhattan/Apollo-style effort to use Al
and federal scientific data to “unleash a
new age of Al-accelerated innovation
and discovery” and bolster U.S.
technological dominance.

Puts DOE in charge and builds a unified
Al platform

Builds in security and access control

Forces government-wide alignment and
partnerships

Imposes aggressive implementation
deadlines

%OAK RIDGE
 Nati

tional Laboratory

me WHITE HOUSE

%
45 47

R PRESIDENTIAL ACTIONS

LAUNCHING THE GENESIS MISSION

Executive Orders November 24, 2025



Today's Talk

Post-ECP Software Ecosystem

Emerging Programming Language
- Julia
- Mojo
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Stewardship of HPC Programming Software Ecosystem
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Why do we care about programming environment?

From Hidden Figures, 2016.

“FORTRAN(IV) is a new and exciting language used by
programmers to communicate with computers. It is
exciting as it is the wave of the future.” --Octavia Spencer
as Dorothy Vaughan, Langley Research Center, NASA in

1961.

(Vaughan was using IBM 7090 Mainframe Computer)

Today, we continue to use programming systems as a
critical tool to communicate with computers and shape
the future.

Courtesy: Damian Rouson at LBL and
Kengo Nakajima at RIKEN/U of Tokyo
% OAK RIDGE who found the line in the movie.
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Scientific Computing Software Development During Exascale
Computing Project (ECP) and Post-ECP Era

US DOE Exascale Computing Project (2016-2023)
* Software Technology Project
* Development of 70 software products
* Annual budget of $70M
*  Programming Systems
* Developed over 10 programming system products
* Supercomputing Systems
e All DOE supercomputing systems employ accelerator technology
Post-ECP Initiative
* End of 2022: Software Sustainability Proposal Call
* Issued by the US DOE Advanced Scientific Computing Research (ASCR)
e April 2023: Phase 1 — Incubation
* 6 projects initiated
* Fall 2023: the Next Generation Scientific Software Technology (NGSST)

* Four existing projects and one new project were recommended for funding
* January 2024: Phase 2 Commencement

* Annual funding of $11.5M allocated through 2028
%OAK RIDGE
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B Python (1.6%)

ClC++  Julia (1.6%)
. . C (1.6%
 Adapting to Heterogeneous Computing Norms —— e o
69.4%
— NVIDIA, AMD and Intel GPUs = v (6%
. .. tee — mm Python/C++ (6.5%)
e Enhancing Productivity Through Performance Portability oA = Fortran/C++ (8.1%)
— Same source code across different platforms Python o+
Julia
e Evolving Programming Systems c
— C++ has become dominant language for ECP apps ——_—
— High productivity Languages, Al/ML
» Legacy Applications
— Many Fortran applications are still actively used in other DOE programs.
C/C++ and Fortran compiler calls 14 1
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Courtesy: Kento Sato, RIKEN, Japan Courtesy: Evans TM, Siegel A, Draeger EW, et al_A survey of
%OAK RIDGE software implementations used by application codes in the
National Laboratory Exascale Computing Project. IJHPCA. 2022;36(1):5-12




Change in Performance Portability Landscape

TOP 500 Supercomputer

10 highest ranked 11/2007

W AMCC
e PowerPC”
,UIDCPSsof B @
Intel Xeon 4C AMD Opteron 2C IBM PowerPC
3 Systems 3 Systems 4 Systems — 2C/4C
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Change in Performance Portability Landscape
TOP 500 Supercomputer

10 highest ranked 11/2023

CPUs: Ope nMP ;Eir:j?:;ng std::thread

Blocks
> AMD eo::w QpenMP
Accelerators N 800
NVIDIA.
CUDA Rocm on API OpenACC
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Observations during ECP

HPC Vendor Shift

. Transitioning from traditional HPC to Al/ML-focused systems.

Cloud HPC Growth

. Cloud-based solutions are overtaking on-premises HPC.

DOE's Custom Solutions

- Features compilers, runtime, APls, and testing suites with fast support.

- Committed to standardizing C++, Fortran, OpenMP/ACC, MPI to meet DOE's

specific needs.
- Aims to establish a unique position within the broader open-source software

community.

Strategic Solution
- Embrace a community-wide, proactive approach to new technology

integration.
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5 Software Stewardship Organizations

NGSST is the next step after the successful DOE Exascale Computing Project (2016-
2023) as we evolved into “Heterogeneous and Al dominated landscape”’

a I
T d a Post-ECP i .
S Open Scientifi Stewardship for Sustainable Tools OASIS (SciDAC
Software pen Scientific Programming ;
Sustainability Software Systems and Ecosystem Project FastMath and
Organization (PESO)  Foundation (CORSA) Tools (S4PST) (STEP) RAPIDS-2)

Lois :
Curfman Greg Keita

Terry

Jones
(ORNL)

Mclnnes Watson Teranishi
(ANL) (ORNL) (ORNL)

- J

%gﬁﬁﬁﬂfﬁg Michael Heroux (retired, SNL) served the former Pl of PESO.




What is S4PST?

® Objective: Enhance Programming Systems for next-generation high-performance computing (HPC)
systems and ensure their seamless integration with emerging Al technologies for scientific advancement.

® Scope: Focus on Performance Portable Parallel Programming Frameworks, Compilers, Distributed
Computing Framework, and High Productivity Languages.

® Challenges:

— Technical: Requires unique skill sets, including comprehensive knowledge of full-stack technologies,
system architecture, and application needs.

— Portfolio: Commitment to serving existing users and computing systems while embracing new

technologies, meeting evolving application demands, and fostering the next generation of HPC
experts.

— People: Dedicated engagement is essential for the development of individual products, support of
users, and mentoring of emerging talents (future HPC experts and leaders).

%OAK RIDGE
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S4PST: Our portfolio for DOE's Scientific Mission

Product Stewardship Emerging Technologies

* OpenMP/OpenACC * Automatic Differentiation (AD)

° LLVM * HPC+AIl ecosystems: Julia, Mojo, Python
* Fortran * Large language models for HPC

* Kokkos * Kokkos ecosystems adapting Al-

e MPICH hardware/special arithmetic units

* Open MPI

®* Legion

®* GASNet-EX/UPC++

* HIP

* SYCL
- ool
L kokkos s

juli:
soupd 2 AN MPI

National Laboratory




S4PST Community

* PI: Keita Teranishi (ORNL)
» CoPI: William Godoy and Pedro Valero

2

La ra Keita Teranishi Pedro Valero- William Godoy (‘:vhriAstian Trott Damien Lebrun- Brice Videau Damian Rouson
(ORNL) Lara (ORNL) (ORNL) Grandie (ORNL) (ANL, ALCF) (LBL)
« 7 National Laboratories: ;
» Oak Ridge National Laboratory ﬁ
» Argonne National Laboratory m\
. . ! ! —

) Lawrence leermore Nat|0na| Laboratory Johannes Doerfert ~ Sunita Johannes Blaschke ~ Pat McCormick  Alex Aiken (SLAC) Paul Hargrove Katherine
e Lawrence Berke|ey National Laboratory (LLNL) Chandrasekaran  (LBL,NERSC) (LANL) (LBL) Rasmussen (LBL)

(uD)
« Sandia National Laboratories

* Los Alamos National Laboratory
» SLAC National Accelerator Laboratory

 University Partners: B
. . Joel Denny Thomas Naughton ~ Suzanne Parete- ~ Swaroop Michel Schanen Rajeev Thakur
* University of Delaware (ORNL) (ORNL) Koon (ORNL) Pophale (ORNL) ~ (ANL) (ANL)

» Massachusetts Institute of Technology @

« Collaborations: 2)
» Louisiana State University

» Pacific Northwest National Laboratory Ignacio Seyong Lee Thomas Ke;1 Raffenetti ‘ Yanfei Guo Siva Rabab v
. . . ORNL] | ANL] i i | i
+ Carnegie Mellon University Laguna (LLNL) (ORND P (ANL) (ANL) Reamanicka Alomairy (MIT)

» University of Tennessee, Knoxville S5 Future
 Stanford University

» Other 6 NSSGT projects
%OAK RIDGE Alan Edelan Jan Hiickelheim Giorgis

National Laboratory (MIT) (ANL) Georgakoudis
(LLNL)

HPC
Expert
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HPSF Conference 2025 @Samna $.0u

Partnership: NNSA — ASC, Industry

Achievement = LDGE

« Coorganized the inaugural HPSF Conference PPN s conreRencs 20

» HPSF is the High Performance Software Foundation a part of the Linux "aiid . - May G 6 | ClicsgollL | #igrsFgn
Foundation £ :

» HPSF partners include DOE labs, universities, and industry
(hpsf.io/members)

+ HPSF is the home for DOE led Open Source projects, including Kokkos and
Spack enabling multi-institutional collaboration through open governance

Significance and Impact

« The conference brought together over 200 developers and users of the HPSF The HPSF Conference 2025 facilitated the coming together of the HPSF
R community to exchange experiences and deepen collaborations. Feedback on
projects the conference was extremely positive with planning for the next event in 2026
* The event enables users of projects such as Kokkos to learn from each other, now underway.

and provide feedback to developers to inform future directions of the project
* HPSF Conference is engineering focused: how do we manage open source
projects, what technical challenges are users encountering, how do we Member Products

improve robustness and sustain Open Source Software for scientific and « Kokkos Chapel OpenMPI (planning)
engineering HPC ' '

U.S. DEPARTMENT | Office of

of ENERGY | science Energy.gov/science




Software Release:

S4PST - Highlights

Kokkos 4.7 Ekokkos
OpenMPI 5.0.2, MPICH 4.3 'MPI
OpenMP 5.2 and 6.0 Verification Suites OpenMP
OpenACC 3.3 Verification Suites OpenACC
ChipStar v1.1 (HIP on Aurora) ¢
Julia 1.1 julia
JACC (Julia for Accelerators) vacc

Technical Accomplishments:

Kokkos-3 won IEEE TPDC Best Paper Award
Legion runs on 8,000 nodes of Frontier
ComPile LLVM-IR LLM released

5+ IJHPCA Journal paper submissions

Collaborations

OpenACC Specification Committee

Outreach:

S4PST Presentation in Japan (HPC-Al Council)

Kokkos User Group Meeting at SNL, NM.

Kokkos Developers Meeting at ORNL

Kokkos Presentation and Tutorial in Japan

LBL hosted Fortran Standards Committee Meeting in Berkeley
ANL hosted IWOCL24 in Chicago

MPICH and OpenMPI teams collaborate for Abstract Binary
Interface standardization

SIAM PP24: OpenMP, LLVM, Kokkos, Fortran, Julia
SC24/SC25 BoFs, Tutorials,
SIAM CSE25: Julia, CASS, etc.

International Collaboration:

e OpenMP Specification Committee e DOE-MEXT (Japan) on Fortran and Kokkos
e Enzyme team and several universities under NSF e Kokkos (DOE team) - CEA Collaboration
project * ADAC: The Accelerated Data Analytics and Computing Institute

e SciDAC Next Generation Power Grid Analysis

Lawrence
Livermore
National
Laboratory

%OAK RIDGE OAK
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Emerging High Productivity Languages
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Thanks!

e Tatiana Melnichenko
*  William Godoy

* Pedro Valero-Lara

* Philip Fackler

e Steven Hahn

* Narasinga Rao Miniskar
* Het Mankad

» Rafael Ferreira da Silva

e Jeff Vetter

%OAK RIDGE
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Research directions toward solutions

o Researchers are actively developing languages and tools to bridge these gaps

=

&= UYacc (sycL.

JULIA FOR ACCELERATORS

A 2  Nojod

Numba

ju

21



Yet another language?

HOW STANDARDS PROLFERATE:

(s6E: A/C CHARGERS, CHARACTER ENCROINGS, INSTANT MESSAGING, ETC)

iR

M?! RIDICULOULS!
WE NEED To DEVELOP
. || ONE UNIVERSAL STANDRRD ,
SITUATON: || Tor covere Evervones || STUATION:
THERE ARE Usg (‘ASES YEAH' THERE ARE
4 COMPETING |5 COMPETING
STANDARDS. STANDPRDS.

%OAK RIDGE
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80-90s —|,

BSc 2002 —|_,

PhD 2009
NASA postdoc

Infel 2012—| |

ORNL 2016

Today —|,

>

<v
eclipse

<NVIDIA.
CUDA. .

& GitLab

9

Y Om

R A7WMPI OpenMP

@\ MaTLAB

MM Ni:

'::l launch
git

H=]| Read

MLIR

& 9 *

docker  visual Studio Code  TensorFlow
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. l\/IOJo()

6verlecf

fuacde,

oneAPI
AMDA1

..ROCm

Things | use today
weren't always there



LLVM: a game changer

http://www.aosabook.org/en/llvm.html

https://llvm.org/ C. Lattner and V. Adve, "LLVM: a compilation

framework for lifelong program analysis &
transformation," International Symposium on
Code Generation and Optimization, 2004. CGO
2004., 2004, pp. 75-86,
https://doi.org/10.1109/CG0O.2004.1281665 .

LLVM Compiler Infrastructure

Rust —

rustc ) X

— Platform 1
c_|_+ Machine Language
il LLVM Platform 2

C [ MIPs MR Machine Language
Loy Typed SSA ’
2 i Gic:;fit % . > Platform 3
r ) (lntel) Machine Language
g c 86
e Optimizations/ Front-end X
oython ;
L 2 Transformations SPARC .. _ / .
s - -
PowerPC Go _‘\\ Middle-end Back-end, |, RisCy
#Scala LLVM IR —1—» LLVM IR H-{ LLVM static compiler
| v
- § o

Toy -- .

\’owerPC

LLVM Typed Static Single Assignment (SSA) Intermediate Representation (IR) aka LLVM-IR:
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

%OAK RIDGE
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%57 = call %"Array(Int32)"* @"*Array(Int32)@Array(T)::unsafe_build:Array(Int32)"(i32 610, i32 2), !dbg 189
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Julia: “scientific” (Fortran-like) access to LLVM and paid by industry

julia> function add(x,y)
return x+y

FUSION

General Atomics releases FUSE—an open-source fusion

(U
@ I‘Q
Uuliad
julia> @code_llvm add(2,3) J

; @ REPL[1]:1 within "add”

define i64 (ie4

signext i64 signext s .
togp: s JHo Newsletter July 2023 - JuliaHub Receives

. @ REPL[1]:2 within ‘add" $13 Million Strategic Investment from e
; ¢ @ int.jl:87 within "+’ Boeing-Backed AEl HorizonX
i 64 Written by JuliaHub

64 CUDA Zone

} CUDA?® is a parallel computing platform and programming model developed by NVIDIA for general computing on graphical processing units (GPUs). With CUDA, developers are able to

dramatically speed up computing applications by harnessing the power of GPUs.

power design tool
P

Thu, Oct17,2024,4:01PM  Nuclear News

ics made its Fusion Synthesis Engine (FUSE) software available to others who want to
ement fusion power plants.

- L

7

In GPU-accelerated applications, the sequential part of the workload runs on the CPU - which is optimized for single-threaded performance - while the compute intensive portion of the
application runs on thousands of GPU cores in parallel. When using CUDA, developers program in popular languages such as C, C++, Fortran, Python, Julia and MATLAB and express
I
parallelism through extensions in the form of a few basic keywords.

The CUDA Toolkit from NVIDIA provides everything you need to develop GPU-accelerated applications. The CUDA Toolkit includes GPU-accelerated libraries, a compiler, development

https://godbolt.org/
tools and the CUDA runtime.
$0AK RIDGE T
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https://godbolt.org/

Julia's value proposition for science

* Designed for “scientific computing” (Fortran-like) and “data science” (Python-like)
with performant kernel code via LLVM compilation

* Lightweight interoperability with existing Fortran and C libraries

* Julia is a unifying workflow language with a coordinated ecosystem

“Julia does not replace Python, but the costly workflow process around
Fortran+Python+X, C+X, Python+X or Fortran+X (e.g. GPUs, simulation +

data analysis)”
where X = { conda, pip, pybind11, Cython, Python, C, Fortran, C++,
OpenMP, OpenACC, CUDA, HIP, CMake, numpy, scipy, Matplotlib, Jupyter,

m LLVM
N
Prototype Production code od eeeee
(MATLAB, Python, ...) (C, C++, Fortran, ...) ulla code ulacode

Main compiler CUDAnative.jl
+ Complex & low-level Front-end
GPU
ortiand
* Not interactive High-level
AST optims BN
Middle-end

* Simple & high-level

* Interactive

* Low development cost * High development cost

* Slow * Fast €y

middle-end|
Continue development ?
https://pde-on-gpu.vaw.ethz.ch/lecture7

%Q‘éﬁl%{gﬁ? https://developer.nvidia.com/blog/gpu-
Y computing-julia-programming-language/

Low-level
optims

o
=
5

1 Fast %

>

Easy Hard

R vSlow

https://juliadatascience.io/

o Rich data science

® [c)e]
JUIla ecosystem
prgji YA julia A v

https://quantumzeitgeist.com/learning-the-
julia-programming-language-for-free/
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Julia Brief Walkthrough

History: started at MIT in the early 2010s (predates J

%

Q
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Python Numba)
https://julialang.org/blog/2022/02/10years/

JuliaHub (formerly Julia Computing) and MIT are
major contributors: https://info.juliahub.com/case-
studies

First stable release v1.0in 2018, v1.11 as of 2025
https://julialang.org/

Open-source GitHub-hosted packages and
ecosystem with MIT permissive license:
https://github.com/JuliaLang/julia

Community: annual JuliaCon summer conference:

https://iuliacon.org/2025/

95% of Julia packages in the registry had some form of CI
(youtube.com/watch?v=9YWwiFbaRx8)

The Julia Programming Language

Download Document tation

Julia in a Nutshell

Fast Dynamic
Julia was N

performance. Julia pr
native code for multipl

Reproducible

Julia is dynamically typed, feels like a scripting Repro
ient  language, and has good support for interactive
se.

Composable General

Julia uses

Open source

Julia is an open source project with over 1,000

contributors. It is made available under the MIT
license. The source code is available on GitHub.

multiple dispatch as a paradi
a

Number of registered packages

6000

4000

) . . .
o

2018 2019 2020 2021 2022
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https://julialang.org/blog/2022/02/10years/
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://julialang.org/
https://github.com/JuliaLang/julia
https://juliacon.org/2024/
http://youtube.com/watch?v=9YWwiFbaRx8

Julia Brief Walkthrough ..

%

v JEXIO DEBEL&
4 Reproducibility is in the core of
the language: e
. . & Exio.jl
- Interactive: Jupyter, Pluto |l
- Packaging Pka.|l A peny
. . &% test_AmrexCastro.jl
- Environment Project.toml = uoa
. . .gitattributes
- Testing Test.|l o giignor
Q Just-in-time or Ahead-of-time B st
compilation with © READMEMa
. . . . . run.log
PackageCompiler.jl (juliac is WIP)
d Powerful metaprogramming for e
code instrumentation: @profile,
@time, @testset, @test,
@code_llvm, @code_native, U | e omcmroncn
@ | N bO un d S, .lu'la Calling C and Fortran Code
A Interoperability is key: @ccall, e Sttt i ‘
@cxx, PyCall, CxxWrap.|l

OAK RIDGE
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Project.toml — jexio

£ Project.tom! X «© @

£ Project.toml

https://qithub.com/ornl-training/julia-basics

You, a year ago | 1 author (You)

1
2 name = "Exio"
3 uuid = "0525473d-17b7-4fd3-beb1-bf17216ddbac"
4 version = "0.0.1"
5
6 [deps]
7  Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
8 DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
9 GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
10 Plots = "9la5bcdd-55d7-5caf-9e@b-520d859cae80"
11 CSV = "336ed68f-0bac-5cad-87d4-7bl6caf5d00b"
12 DataStructures = "864edb3b-99cc-5e75-8d2d-829ch@a9cfe8"
13
14 [compat]
15  julia = "1"
16  JuliaFormatter = "0.6.2"
17
18  [extras]
19 Test = "eaabfafa-8011-46e2-b288-c2fle2a8ee56"
20 JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60@c6c9e899"
21
& runtests.jl X >~ «©
test > & runtests.jl
You, 2 years ago | 1 author (You)

1

2 using Test, Base.Filesystem

3

4 import Exio

5

6 @testset "test_AmrexCastro" begin

7 include("test_AmrexCastro.jl")

8 end;

9

10 @testset "test_Exio.input_parser_docstring" begin

11 @test println(@doc Exio._input_parser) === nothing

12: end;

13

27
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https://pkgdocs.julialang.org/v1/toml-files/
https://docs.julialang.org/en/v1/stdlib/Test/
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaInterop/CxxWrap.jl
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Gray-Scott app: https://github.com/JuliaORNL/GrayScott.jl

Simple 3D 2-variable
diffusion-reaction solver

« CPU Threads, CUDA .|l
and AMDGPU.jl
backends using

multiple dispatch

o Parallel 1I/O ADIOS2,.
can be visualized with
ParaView

e MPLjlfor = .
communication

« Configuration and job
scripts for Frontier, ~
Crusher and Summif
under ./scripts/

 Data analysis on
JupyterHu

PR

g ———

%OAK RIDGE

National Laboratory

Julia
HPC Cluster: C, C++, Fortran
[init MP1 and 11O
Parse and Broadcaslt
JSON Config File
7 - Back-ends
M'r'l
2 cPU GPU GPU
Deccc))‘:\zz::uon o Threads| |AMD| |CUDA
~ e =il
Fields
Simulation J
Loo Computation
D T L\\\ \)
< // Ny
/ :
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Yes Files System
\\\ :
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Python data analysis Nowebooks|
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Research question: Can | write
an entire HPC "hard-coupled”
workflow in Julia2

Authors: William F. Godoy, &, Pedro Valero-Lara, §, Caira Anderson,

Best paper at SC23 WORKS

Yinw f=

Julia as a unifying end-to-end workflow language on the Frontier
exascale system

Katrina W. Lee, &) Ana Gainaru,

ence on High Performance Computing, Network,

Storage, and Analysis « November 2023 « Pages 1989-1999 « https://doi.org/10.1145/3624062.3624278

https://doi.org/10.1145/3624062.3624278

https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
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Frontier on-node scalability using AMDGPU.jl

7-p0i nt stencil Table 2: Average bandwidth comparison of different
stencil implementations on a single GPU.

Kernel Bandwidth (GB/s)
Effective | Total
Julia GrayScott.jl
- 2-variable (application) 312 570
- 1-variable no random 312 625
HIP single variable 599 | 1,163
Theoretical peak MI250x 1,600
fetch_sizeeffective = [L3 -8-12(L- 2)] - sizeof (T) Table 3: rocprof outputs for HIP 1-variable and Julia
(4a) Gray-Scott.jl implementations
write_sizeeffective = (L — 2)° - sizeof (T) kernel HIP GrayScott.jl
(4b) metric 1-var | 1-variable 2-variable
no random | (application)
) (fetch_size + write_size) ffective wgr 256 512 512
bandwidthffective = Ternel Time 1ds 0 29,184 29,184
] G ;‘;rTCH SIZE (GB) " gl sioi
25.08 25.40 50.80
bandwidthyyyy = St CH-SIZE + WRITE_SIZE):ocprof WRITE_SIZE (GB) | 8.35 838 16.78
kernel_time TCC_HIT (M) 9.14 10.80 24.60
(5b) TCC_MISS (M) 8.36 8.69 17.19
Avg Duration (ms) | 28.74 54.03 111.07

| (| Iillll;lllifllr

v CPUHSAAPI3

& Nanonal Lal Figure 5: Gray-Scott simulation trace obtained with rocprof showing computational load on GPU and memory
transfer to CPU for communication.

Listing 2: Julia AMDGPU.jl Gray-Scott kernel

using AMDGPU
using Distributions

function _laplacian(i, j, k, var)
1 = var[i - 1, j, k] + var[i + 1, j, k]
+ var[i, j - 1, k]l + var[i, j + 1, k]
+ var[i, j, k - 1] + var[i, j, k + 1]
- 6.0 x var[i, j, k]
return 1 / 6.0
end

function _kernel_amdgpu!(u, v, u_temp, v_temp,
sizes, Du, Dv, F, K,
noise, dt)

k = (workgroupIdx().x - 1) * workgroupDim().x
+ workitemIdx ().x
j = (workgroupIdx().y - 1) * workgroupDim().y
+ workitemIdx().y
i = (workgroupIdx().z - 1) * workgroupDim().z
+ workitemIdx().z
if k == 1 || k >= sizes[3] ||
j == 11| j > sizes[2] ||
i == 1 || i >= sizes[1]
return
end

@inbounds begin
u_ijk = uli, j, kI
v_ijk = v[i, j, k]
du = Du * _laplacian(i, j, k, u)
- u_ijk * v_ijk*2 + F % (1.0 - u_ijk)
+ noise * rand(Uniform(-1, 1))

dv = Dv * _laplacian(i, j, k, v)
+ u_ijk * v_ijk*2 - (F + K) * v_ijk

u_templ[i, j, k]
v_temp[i, j, k]
end

u_ijk + du * dt
v_ijk + dv * dt

return nothing
end




Frontier on-node scalability using AMDGPU.jl

7-point stencil
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fetch_sizeeffective = [L3 -8-12(L- 2)] - sizeof (T)

Table 2: Average bandwidth comparison of different
stencil implementations on a single GPU.

Kernel Bandwidth (GB/s)
Effective | Total
Julia GrayScott.jl N
- 2-variable (application) 312 570
- 1-variable no random 312 625
HIP single variable 599 | 1,163
Theoretical peak MI250x 1,600 /

Table 3: rocprof outputs for HIP 1-variable and Julia
Gray-Scott.jl implementations

kernel HIP GrayScott.jl
metric 1-var | 1-variable 2-variable
no random | (application)
wgr 256 512 512
1ds 0 29,184 29,184
scr 0 8,192 8,192
FETCH_SIZE (GB) | 25.08 25.40 50.80
WRITE_SIZE (GB) | 8.35 8.38 16.78
TCC_HIT (M) 9.14 10.80 24.60
TCC_MISS (M) 8.36 8.69 17.19
Avg Duration (ms) | 28.74 54.03 111.07

Listing 4: GrayScott.jl application kernel unique mem-
ory loads (14) and store (2) in LLVM-IR

%94 = load double, double addrspace(1)* %93, align 8
%103 = load double, double addrspace(1)* %102, align 8
%107 = load double, double addrspace(1)* %106, align 8
%110 = load double, double addrspace(1)* %109, align 8
%114 = load double, double addrspace(1)* %113, align 8
%117 = load double, double addrspace(1)* %116, align 8
%122 = load double, double addrspace(1)* %121, align 8
%126 = load double, double addrspace(1)* %125, align 8
%312 = load double, double addrspace(1)* %311, align 8
%315 = load double, double addrspace(1)* %314, align 8
%318 = load double, double addrspace(1)* %317, align 8
%321 = load double, double addrspace(1)* %320, align 8
%325 = load double, double addrspace(1)* %324, align 8
%329 = load double, double addrspace(1)* %328, align 8

store double %345, double addrspace(1)* %353, align 8
store double %355, double addrspace(1)* %363, align 8

Julia AMDGPU.jl reaches ~50% bandwidth (performance) of HIP

No surprises on: FETCH/WRITE SIZE, LLVM-IR

rocprof reports more activity “lds” on Julia

(42)
write_sizeeffective = (L — 2)3. sizeof (T)
(4b)
) (fetch_size + write_size) ffective
bandwidthef fectioe = kernel_time
(52)
FETCH_SIZE + WRITE_SIZE) ,ocpr
bandwidth,gsg = ( - - Drocprof
kernel_time
(5b)
%OAK RIDGE
National Laboratory




Frontier on-node scalability using AMDGPU.jl for several GPUs

Bandwidth distribution for 4,096 GCD (GPUs) and 20 timesteps. HIP ~ 600 GB/s (800 GB/s claimed on
MI250x), Theoretical Peak on MI250x = 1,600 GB/s

104 5

103 -

Occurrences

107 4

10°

(

National Laboratory

102 -

24

JIT

26 306

Optimized
A

T T 1
328 340 342

308

310
Bandwidth (GB/s)

312 314 330



GrayScott.jl Weak Scaling on Frontier

* Tested successfully
up to 512 nodes (5%
of Frontier) 1
GCD/MPI proc using
MPL I

* Tried 4K nodes (50%

of Frontier) resulted
in a libfalbric error

e 2-3% variability up to
64 nodes

e 12-15% variability at
512 nodes

%OAK RIDGE
National Laboratory

Wall clock time (seconds)

160

150

140

130

PO

64 [8] 512 [64]

Number of MPI processes/GCDs [Frontier nodes]

4096 [512]




Data analysis on JupyterHub at OLCF e i =

https://jupyter.olcf.ornl.gov/

We launched a Julia kernel on
JupyterHub to read and
analyze data

We read with ADIOS2.jl and
visualize with Makie |l

JIT and TTFX (time to first plot)
can be a nuance

Pluto.jle

hreads) 1.9.0 | idle

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Parashar M. ... & Klasky, S. (2020). Adios 2: The
%OAK RIDGE adaptable input output system. a framework for high-performance data management. SoftwareX, 12, 100561.
National Laboratory https://doi.org/10.1016/j.softx.2020.100561
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https://doi.org/10.1016/j.softx.2020.100561

Community Efforts in HPC: more frameworks written in Julia

“ ", . . o Top15 most popular packages
HPC "backends™ https://github.com/omlins/julia-gpu-course e

«  hittps://julia u.org/. - :Mm B w® R
AMDGPU.]l , CUDA] o I8 .

a StaticArrays
tatistic

OneAPLjl: Metal] . -

LA
e -

GPU Programming With Jutia

. KernelAbstractions.jl, JACC.] O - Y Lo E
« MPL] i
https://sciml.ai/

- Threads (part of Base)
- ADIOS2.jl, HDFES I
Monthly HPC Call (Valentin Churavy,

General Atfomics:
https://qithub.com/ProjectTorreyPines

MIT) ECP ExaSDG on Summit
. .« . . . 1 H (] S Print
Porting miniweather App to Julig https:/qithub.com/CliMA Reanid Prototybing with Julia:
(Youngsung Kim, Hyun Kang, and Sarat . ) . Mathematics to Fast Code
Sreepathi CSEDj ' https://github.com/SunnySuite/Sunny.jl
Julia + Sunway + QC at SC22 https://docs.dftk.org/stable
Home O EditonGitHub SIAAC:: n/ QE”I“ Vlews aIrltheWS
‘I;a‘:gv;sc‘ale simulation of quantum computational ch‘e'r:i‘s:riy :)n @ DFTKJI The density-functional toolkit.« R December 201
anew;sunway; supercomputer DFTK]I The density-functional toolkit, DFTK for short, is a library of Juli: i it
functional theory (DFT) algorithms. In its basic ion it sol periodic Koh ions. The unique Contents Articles

Authors: Jelly § WenhaoZhou

Targeting Exascale with Julia on
GPUs for multiperiod optimization
with scenario constraints

https://juliaastro.github.io/dev

ingdac Kim, Adrian Mal-
Rao, Michel Schanen,
o

#,0AK RIDGE
National Laboratory https://github.com/JuliaParallel
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JACC.jl (Julia ACCelerated), What is that?? &

Jacc

JULIA FOR ACCELERATORS

Think in Kokkos, but now imagine that it is easy to use

The metaprogramming and performance portability model of Julia
- One “parallel_for” code running everywhere

Applications
« JACC is a unified Julia front-end in top of multiple backends
— Threads (CPUs), CUDA (NVIDIA GPUs), AMDGPU (AMD GPUs), _
and OneAPI (Intel GPUs) Threads || CUDA || AMDGPU || OneAPI || Others
« Hide low-level and device specific implementation _
- Memory, granularity, etc. ey | o | avo | e [
GPU GPU GPU

Improve programming productivity for Science and HPC

A growing community (family)
- BNL(NERSC), Argonne, MIT, ETHZ, FI/CCQ, ...
- You are welcome to join (JACC meetings once a month)

% 0AK RIDGE , : .
National Laboratory https://github.com/JulicORNL/JACC ||



https://qithub. COWJUIIOORNL/JACC |

What is a parallel_for?

- For loops that are “ideally” independent ‘ i d a C C

JULIA FOR ACCELERATORS

for 1 %nll:ng\K;Domain (;ﬂﬁ@WﬁWEﬂF@W
Y

for 7 in 1:

s =1 — s - i Coarse granularity Fine
c[i,]] afi,j] + b[i,]] (i,3)k- granularity
3 .

(i,j)k+Ncore (1,3)

en

Kernel workload
end

per (i,]) CPU (multiple cores) GPU (hundreds of cores)
parallel_for( domain, kernel, args...)
parallel_for( (Nx,Ny), add2D, a, b, c)

function add2D

cli,3] = ali,3] + bli,j]
end

%OAK RIDGE

National Laboratory

{


https://github.com/JuliaORNL/JACC.jl

JACC model, How to use it??

» Descriptive, not prescriptive
« Two main APl components

¢« Memory: JACC.array, JACC.shared
high-level: JACC.ones/JACC.zeros

- An alias to the corresponding
back end memory

« Kernels: JACC.parallel_for and
JACC.parallel_reduce

- Kernel and arguments passed to
functions

- Back end selection pre-compilation:
JACC.set_backend(*AMDGPU");
LocalPreferences.toml: [JACC]
backend: Threads, CUDA, AMDGPU

%OAK RIDGE

National Laboratory

JACC.ones (T, size x + 2, size y + 2, size z + 2)
JACC.zeros (T, size x + 2, size y + 2, size z + 2)

offsets = JACC.array (mcd.proc offsets)
sizes = JACC.array (mcd.proc sizes)

d::Int6d = 6

minL = Int64(settings.L / 2 - d)
maxL = Int64(settings.L / 2 + d)

# ncenter cells = maxL - minL + 1
Lx, Ly, Lz = mcd.proc sizes[l], mcd.proc sizes[2],

mcd.proc_sizes[3]

JACC.parallel for((Lx, Ly, Lz), init fields kernel!,
u, v, offsets, sizes, minL, maxL)

Gray-Scott simulation code

Yacc

JULIA FOR ACCELERATORS

https://github.com/JulicORNL/JACC.|l

JACC.zeros (T, size x + 2, size y + 2, size z + 2)
JACC.zeros (T, size x + 2, size y + 2, size z + 2)



https://github.com/JuliaORNL/JACC.jl
https://github.com/JuliaORNL/GrayScott.jl/blob/GrayScott-JACC/src/simulation/Simulation.jl

%

How is JACC implemented??

The simpler the better, use everything that Julia can
provide

One implementation per backend

#JACC.Array and JACC.parallel_for on top of
Threads
function __init__()
const JACC.Array = Base.Array{T,N} where {T,N}
end
#Unidimensional
function parallel_for(N::I, f::F, x...) where {I<:
Integer ,F<:Function}
Threads.@sync Threads.@threads for i in 1:N
fiCi: Rees)
end
end
#Multidimensional
function parallel_for ((M, N)::Tuple{I,I}, f::F, x
...) where {I<:Integer,F<:Function}
Threads.@sync Threads.@threads for j in 1:N
for i in 1:M
G (T | ()
end
end

end "

."
OAK RIDGE JULIA FOR ACCELERATORS

National Laboratory

function __init__()
const JACC.Array = CUDA.CuArray{T,N} where {T,N}
end

function _parallel_for_cuda(f, x...)
i = ( blockIdx().x - 1) * blockDim().x +
threadIdx().x

f(i, x...)
return nothing
end

function JACC.parallel_for(N::I, f::F, x...) where
{I<:Integer ,F<:Function}
maxPossibleThreads = attribute(device(),CUDA.
DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X)
cuda_threads = min(N, maxPossibleThreads)
cuda_blocks = ceil(Int, N/cuda_threads)
CUDA.@sync @cuda threads=cuda_threads blocks=
cuda_blocks _parallel_for_cuda(N, f, x...)
end

function _parallel_for_cuda_MN(f,x...)

i = ( blockIdx().x - 1) * blockDim().x +
threadIdx () .x

j = ( blockIdx().y - 1) * blockDim().y +
threadIdx().y

fiCi, 3, X...)

return nothing

end
function JACC.parallel_for((M, N)::Tuple{I,I}, f::
F, x...) where {I<:Integer,F<:Function}

numThreads = 16

Mthreads = min(M, numThreads)

Nthreads = min(N, numThreads)

Mblocks = ceil(Int, M/Mthreads)

Nblocks = ceil(Int, N/Nthreads)

CUDA.@sync @cuda threads=(Mthreads, Nthreads)
blocks=(Mblocks, Nblocks)
_parallel_for_cuda_MN(f, x...)

end

https://github.com/JulicORNL/JACC ||



OK, but this is HPC, What about performance??

LBM on AMD CPU Rome

%

OAK RIDGE

National Laboratory

1D AXPY & DOT on AMD CPU Rome
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Julia as a unifying end-to-end
workflow language on the
Frontier exascale system. SC

WORKS 2023

Evaluating performance and
portability of high-level
programming models: Julia,
Python/Numba, and Kokkos on
exascale nodes. IPDPS HIPS 2023
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JACC: Leveraging HPC Meta-Programming and
Performance Portability with the Just-in-Time and
LLVM-based Julia Language
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Teranishi, and Jeffrey S. Vetter
Oak Ridge National Laboratory
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{valerolarap},{godoywf},{mankadhy},
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® Streaming algorithm: Esoteric Pull

Lattice: D3Q19

Mesh: 256x256x256

LBM Prototype in Julia

Boltzmann Lattice Advanced Simulation Tool

® Test case: Taylor Green Vortex
A N
GPU Performance (single precision)
20.59
(U
15
LBM Solvers
g B Fluiaxap
a 107 8.57 5,31 508 1| BLAST-CUDA
ik B BLAST-JACC
6.52
: 50 4.99 4.98 4.87
3.49 3.96
2.34 2.35 2.34 ...
H A Jacc
0 -
JULIA FOR ACCELERATORS
T T T T T T
RTX5000 A30 A100 GH200  Intel GPU Max 1100  AMD Mi210
QK FIDGE = CERFACS

National Laboratory

https://cerfacs.fr/
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Ongoing efforts??

« JACC.shared
Exploiting high-bandwidth

programable in-chip GPUs memory

JacCC

JULIA FOR ACCELERATORS

Accepted at
IEEE HPEC24

JACC.shared: Leveraging HPC Metaprogramming
and Performance Portability for Computations That
Use Shared Memory GPUs

Pedro Valero-Lara
Advanced Computing Systems Research Section
Oak Ridge National Laboratory
Ok Ridge, Tennessee, USA
valerolarap@orml gov

William F. Godoy
Advanced Compuing Systems Research Section
Oak Ridge National Laboratory
Ouk Ridge, Tennessce, USA
‘godoywl@omlgov

GPU
Multiprocessor 1

Thread 1
| Tvesa 1 ] ]
Local Memory - L1

Registers

Registers

Main Memory
Global Memory

function spectral(i, j, image, filter, num_bands) Ndweed ompatng Sy s Scton Al Conpg Syions RsearehScion | Lozl Eney=L2 |
for b in 1l:bands ok e T, U3 ok i, Temos, 5
. . Fi . . . teranishik@ornl.gov. vetter@oml gov
@inbounds image([b, i, j] *= filter[j] * ¢
end
end Multi-Spectral Image Multi-spectral Multi-spectral
Filter 2o 2 8.E-01 £S
function spectral_shared(i, j, image, filter, . i |
num_bands) Filter = 2l |3 s =
fShar 1 memor 1nitial 1 I \1019\’ = spo & € g “5%
filter_shared = JACC.shared(filter) o = H H H o o [—I I—I
for b in l:bands NS 0.E+00 'T‘ AH & 'A=| . 0 0.E+00 = = 0
@inbounds image[b, i, j] *= filter_shared[]] & ¥ 3
end — D EORINCCNPOS
Bands ’ ’
nd #Bands, Image Size (MxM), Filter Size (NxN) #Bands, Image Size (MxM), Filter Size (NxN)
e E=JACC C=JACC-Shared Speedup E=JACC C=3JACC-Shared Speedup
Fler Convolution Convolution
num_bands 60 1z ; \5\:: ; ; ; 0.15 4 0.06 25
num_voxel = 10_240 = Sl 35 .
size_voxel = 64x64 ; 1 il o ol _ 004 e
image = init_image (Float32, R 2 2 T
. i & 2
num_bands, num_voxel, size_voxel) 3 = 00s 002 '

filter = init_filter (Float32, size_voxel) : 1o =5 l:l o mE ﬁ ﬁ o
jimage = JACC.Array (image) o = = . oo 0 . AR
jimage_shared = JACC.Array (image) 3 ) @ )

S F 1 - J l42 < v N VoY
jEilter JACC.Array (filter) ) 2l #inputs, Size Inputs (MxM), Size Filter (NN) #Inputs, Size Inputs (MxM), Size Filter (NxN)
JACC.parallel_for ((num_voxel,size_voxel), E=mJACC =JACC-Shared Speedup E=JACC C=JACC-Shared Specdup

spectral [_shared], jimage, jfilter, num_bands) .
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Ongoing JACC efforts ‘h ACC

Presented at SC24 WACCPD

* JACC. expermen fal JACC: Leveraging HPC Meta-Programming and
o Aseparate JACC module to 1 Performance Portability with the Just-in-Time and
explore new ideas LLVM-based Julia Language

Pedro Valero-Lara, William F. Johannes Blaschke Michel Schanen
. God‘ay,l Het Mankad, Keita Lawrence Berkeley National Argonne National Laboratory

* JACC Proxies TS Y et

. el Oak) ?jdge' ’n}li FSA i) jpblaschke@Ibl.gov
Best ORNL CS intern ohigodor rarladhy,

{teranishik},{vetter}@ornl.gov

Compare JACC in science
° Workloads (LULESH. poster by Kelly Tang

XSBench, BabelStream, &
Hartree-Fock) |

« JACC.BLAS
- BLAS library on top of JACC

o JACC.multi

- Support for multi-device

« JACC.auto

- Support for auto-tuning : . .
SC24 Al4Science using Julia
o Task-based — JACC.async « ‘ ‘ ChatBLAS: The First Al-Generated and Portable
- DAGGER],RS-R&DIO0 . o BLAS Library
OAK R : Julia for utoria _ . -
iy and 3 BoF w/ MIT and LBNL https://github.com/JulicORNL/JACC i

JACC: SC24 Best Poster Finalist (6/120)



https://github.com/JuliaORNL/JACC.jl
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Ongoing JACC efforts: facilities

Ylacc

JULIA FOR ACCELERATORS

« Infegrated Research Infrastructure: provide an accessible performance portable ecosystem

« CPU only workflows -> CPU/GPU on HPC systems

%

Instrument Data Acquisition Neutron Computing Resources

LoadEventNexus

file system reduction

analysis.sns.gov

REMOTE USER

Garnet/Mantid Flow

C++ MPI Proxy
(CPU only)

K N: rotations

Julia JACC
MPI Proxy
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Best Paper at SC24 XLOOP

Integrating ORNL’s HPC and Neutron Facilities
with a Performance-Portable CPU/GPU Ecosystem

Steven E. Hahn, Philip W. Fackler, William F. Godoy, Ketan Maheshwari, Zachary Morgan, Andrei T. Savici,
Christina M. Hoffmann, Pedro Valero-Lara, Jeffrey S. Vetter, and Rafael Ferreira da Silva

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{hahnse,facklerpw,godoywf,kmo0, j,saviciat,choffi p,vetter,silvarf} @ornl.gov

function binEvents! (h::Hist3, events::AbstractArray,
transforms::Arrayl{SquareMatrix3c})
JACC.parallel_for(
(length (transforms), size(events, 2)),
(n, i, t) —-> begin
@inbounds begin
op = t.transforms([n]
v = op * C3[t.events[6, 1], t.events[7, i],
t.events([8, 1i]]
atomic_push! (t.h, v[1], v[2], Vv[3],
t.events[1l, 1i])
end
end,
(h = h, events, transforms),
)
end

Listing 3. MiniVATES.jl BinMD CPU/GPU implementation using
JACC.jl.



https://wordpress.cels.anl.gov/xloop-2024/awards/
https://wordpress.cels.anl.gov/xloop-2024/awards/

Where to get started?

Pick a gentle tutorial: https://techytok.com/from-zero-to-julia/

https://qithub.com/ornl-fraining/julia-basics (training by WF Godoy & Philip Fackler) OLCF
Tutorial: hitps://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html

Use VS Code as the official IDE + debugger

Julia in Vi

JuliaCon talks are available on YouTube

https://discourse.julialang.org/ Stackoverflow might be outdated,
https://julialang.slack.com/

Julia docs and standard library: https://docs.julialang.org/en/v1/

Learn: Project.toml, Testing.jl @testset @test, Pluto.jl, CUDA.JI/AMDGPU.jI, JACC ],
KernelAbstractions.jl, LinearAlgebra.jl , Makie. I, Plots.jl and Flux.jl (Al/ML), how to build a
sysimage with PackageCompiler |l

Pick problems you care about! Let us know if you're interested in a hackathon.

Patience and community reliance: learning a language is a big investment.

%OAK RIDGE https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html 44
National Laboratory
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Early Exploration of Mojo
\\lojo ¢

%OAK RIDGE
National Laboratory
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When Python is not enough...and it's a fragmented world

Making Python “faster”

Python C API Hpy direct Python API in C

Puth,
hon

W
3
2
i
e

. C++ conveniences on top
pybind11 . of the Python C API

SIP

Py++
pybindgen

; creates C++ bindings
iboken(2)

from a configuation file

2]
=H

A uloWlG
PyCLIF

cppyy : : — dynamic, runtime bindings
ctypes dynamic bindings to shared
cffi library files ("extern C")

it Tex — mixes C/C++ and Python
SciP VIJ’E ave | ; ; ; ; (with annotations or as a
i i Cython ; ; H new language)

Nuitka
shedskin

converts Python into C/C++
Pythran for compilation as a new
extension module

Pythonic++

Unlade,nP E};‘. W Pyston compilation or hotspot JIT
A : Seg/Codon as a new Python shell

psyco : pylibjit

Numba H H H specialized, numerical,
AX 3 H ¢ opt-in JIT-compilation

Taichi 1 —
NVIDIA/Warp ; -

1 | |
2016 2018 2020 2022 2024

11 | 1 1 | | 1 1

I
1990 1995 2000 2002 2004 2006 2008 2010 2012 2014

https://raw.qgithubusercontent.com/jpivarski-talks/2023-05-01-hsf-
india-tutorial/main/img/history-of-bindings-2.svg

%OAK RIDGE
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Mojo overview

Mojo combines Python’s syntax and ecosystem with high performance
GPU portability in the standard library: NVIDIA, AMD, and Apple Silicon* GPUs

MLIR compilation

Industry-funded

Memory safety via variable lifetime
Projected open-source in 2026

Mojo @ Code - """ . python#

MLIR &
LLVM-IR since 06,2025
NVIDIA GPU AMD GPU
Hopper, Ampere MI300

compile-time

Nlodular
raises

nﬁ%u
G/ greylock G

* The most up-to-date Mojo GPU
compatibility list can be found here:

ages/#apu-compatibility
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https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/

Mojo overview

from gpu.host import DeviceContext
from gpu.id import block_dim, block idx, thread_idx
from layout import Layout, LayoutTensor

manager:

from python import Python

alias dtype = DType.float32 Compile-time GPU _in_Ti .
alias Nx = 1024 { programming requires JUST IN Tlme‘
alias layout = Layout.row_major(Nx) tensor type, size, and N .

alias block size = 256 onou’r pIXI run mOJO
alias num_blocks = ceildiv(Nx, block_size) 1

fn fill_one(tensor: LayoutTensor[mut=True, dtype,layout]): ——— prog.mOJO

var tid = block_idx.x * block_dim.x + thread_idx.x

s . ¢ GPU kernel g .
if tid < onetn Ahead-of-Time:
tensor[tid] = 1 9 o«
o main() pixi shell
ctx = DeviceContext() . .
d_u = ctx.enqueue_create_buffer[dtype](nx) ¢ GPU memory model mOJO bU||d
u_tensor = LayoutTensor[dtype,layout](d_u) .

ctx.enqueue_function[fill one](u_tensor,
grid_dim=num_blocks,

block dim=block _size t GPU kemel execution ./pr%jo FAQ.

)

ctx.synchronize()

np = Python.import module("numpy") Python interoperability h'I"I'DS//d OCSI’Y]OdUlC”'C
array = np.array(Python.list(1, 2, 3)) s Uses a separate

print(array) runfime approach om/moio/foq/



https://docs.modular.com/mojo/faq/
https://docs.modular.com/mojo/faq/

Project description
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o Can scientific users benefit from Mojo’s performance-portable GPU

codes?

o First comprehensive study on Mojo

o Ported 4 scientific workloads
o 2 memory-bound

o 2 compute-bound

https://github.com/tdehoff/

Mojo-workloads

o Goal: Assess Mojo performance portability vs. vendor-native baselines (CUDA/HIP)
e Tested and benchmarked on ORNL's ExCL nodes:

o NVIDIAH100 NVL - 94 GB

o AMD MI300A - 128 GB HBM3

ExCL =



https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads

Memory-bound workloads

e BabelStream: Copy, Multiply, Triad,
Add, Dot memory benchmarking
operations (University of Bristol:
github.com/UoB-HPC/BabelStream)

fn dot_kernel(a: UnsafePointer[Floaté64],
b: UnsafePointer[Float64],
sums: UnsafePointer[Float64]):
var s = stack allocation[TBSize, Float64,
address_space=AddressSpace.SHARED] ()
var i = block_idx.x * block dim.x + thread_idx.x
s[thread_idx.x] = a[i] * b[i]
barrier()
var off = block dim.x // 2
while off > o:
if thread_idx.x < off:
s[thread_idx.x] += s[thread_idx.x + off]
off //= 2
if thread_idx.x == o:
sums[block idx.x] = s[0@]

50

e Seven-point stencil: Used for

modeling diffusion phenomena
(AMD lab notes:
github.com/amd/amd-lab-notes)

fn laplacian_kernel(f: LayoutTensor[mut=True, Float32, layout],

u: LayoutTensor[mut=False, Float32, layout],
nx: Int, ny: Int, nz: Int,
invhx2: Float32, invhy2: Float32,
invhz2: Float32, invhxyz2: Float32):

var i = thread_idx.x + block idx.x * block dim.x

var j = thread idx.y + block idx.y * block dim.y

var k = thread_idx.z + block _idx.z * block_dim.z

if @< i<nx-1and © < j<ny-1and @ < k < nz-1:

f[i,j,k] = u[i,j,k]*invhxyz2 +

(u[i-1,j,k]+u[i+1,],k])*invhx2 +
(u[i,j-1,k]+u[i,j+1,k])*invhy2 +
(u[i,j,k-1]+u[i,]j,k+1])*invhz2

o Performance metric: memory bandwidth (GB/s)
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Compute-bound workloads

o miniBUDE: Models ligand-protein docking
(University of Bristol: github.com/UoB-
HPC/miniBUDE)

fn fasten_kernel[PPWI: Int](natlig: Int, natpro: Int,
protein: UnsafePointer[Float32],
ligand: UnsafePointer[Float32],
etotals: UnsafePointer[Float32],
forcefield: UnsafePointer[Float32])
var ix = block_idx.x * block_dim.x * PPWI + thread_idx.x
var etot = InlineArray[Float32, PPWI](fill=0)

fo

3

il in range(natlig):
var 1x = ligand[il*4]; var ly = ligand[il*4+1]; var 1z = ligand[il*4+2]

for ip in range(natpro):
var px = protein[ip*4]; var py = protein[ip*4+1]; var pz = protein[ip*4+2]
var dx = 1x - px; var dy = 1y - py; var dz = 1z - pz
var dist = sqrt(dx*dx + dy*dy + dz*dz)
var tmp = 1.0 - dist * 0.1
etot[0] += tmp * 45.0

etotals[ix] = etot[0]
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o Hartree-Fock: Includes atomics;
approximates the electron behavior in
quantum systems (Argonne NL:
github.com/gdfletcher/basic-hf-proxy)

fn hartree_fock_kernel(ngauss: Int, schwarz: UnsafePointer[Float64],

var
var
var
var
for

xpnt:
geom:
dens:
fock:
ijkl = block_idx.x *
i = ijkl // natoms
j = ijkl % natoms
eri: Floaté4 = 0.0
ib in range(ngauss):

UnsafePointer[Float64], coef: UnsafePointer[Float64],
LayoutTensor[mut=True, dtype, geom_layout],
LayoutTensor[mut=True, dtype, layout],
LayoutTensor[mut=True, dtype, layout]):

block_dim.x + thread_idx.x

for jb in range(ngauss):
aij = 1.0 / (xpnt[ib] + xpnt[jb])

dij = coef[ib] *

coef[jb] * exp(-xpnt[ib] * xpnt[jb] * aij *

pow(geom[i,0]-geom[],0], 2))
if abs(dij) > dtol:

eri += dij *

sqrt(aij)

Atomic.fetch_add(fock.ptr.offset(i * natoms + j), dens[i,j] * eri)

e Performance metric: miniBUDE — GFLOP/s, Hartree-Fock — time in ms
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http://github.com/gdfletcher/basic-hf-proxy
http://github.com/gdfletcher/basic-hf-proxy

Roofline model: NVIDIA H100
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BabelStream on NVIDIA H100

o Input configuration: vector of 22° doubles

e NVIDIA NCU profiler output is available in extra slides
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O “
< 3000 ki e om0 S,
_c L )
.§ . *
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© ° .
“ 2500
® Mojo
e CUDA
2000 - : : . .
Copy Mul Add Triad Dot
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BabelStream on NVIDIA H100

o Input configuration: vector of 22° doubles
e NVIDIA NCU profiler output is available in extra slides

95

CUDA: Number of

GPU thread blocks
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BabelStream on AMD MI300A %0

e Input configuration: vector of 22° doubles

G - Theoretical Peak = 5300 GB/s HIP: p‘qr:‘idfums
array is host-
,“ " " e L N ] L — allocated
' > inned) via
2000 . o , (pinne
- o o hipHostMalloc
(2]
G 1000
= Mojo: partial sums
2 500 Higher is better - array is device-
= Vector size = 22° elements O“OCFOerd and
8 copied back to
200 5 host buffer for the
final reduction
1001 e Mojo
HIP
50

Copy Mul Add Triad Dot



7-point stencil on NVIDIA H100 >

Single Precision

5000
_ Theoretical Peak = 3900 GB/s
o 3-dimensional input, L ° HGNEFISOELEEr
denotes dimension size B 2000
2 @smenm Pt~
. . - . 4 - 3 ompmmp S annam
o Tested with different GPU s — .
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7-point stencil on AMD MI300A

Single Precision

5000 T T — Theoretical Peak = 5300 GB/S

> Higher is better
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miniBUDE on NVIDIA H100

o Work-group size = 8, PPWI (x-axis) varies the computational workload per GPU

thread
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miniBUDE on AMD MI300A

o Work-group size = 8, PPWI (x-axis) varies the computational workload per GPU

thread
3000 - —e— Mojo
-=4- HIP-no-fastmath
2500 A —e— HIP-fastmath
2000 - Theoretical peak = 122.6 TFLOPs
§ Higher is better
Q 1500 -
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O
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Hartree-Fock (atomics) 62

Mojo CUDA Mojo

472 25,266

a=1024, ngauss=6

a=256, ngauss=3
53 2,765

/ 436

a=128, ngauss=3

a=64, ngauss=3

o NVIDIA H100: Mojo is about 2.5 times faster than CUDA for small input sizes; at

1024 Mojo’s performance degrades sharply
e AMD MI300A: Mojo significantly underperforms HIP across input sizes



Performance portability metric (®) 63

o Adapted from Pennycook et al (2021) & Marowka (2025):

Dpfojo = W ei(a) = Uendor(](\?d;]l;)ze/rlj;;;)perf_i
Workload % NVIDIA H100 P AMD MI300A Average ¢
BabelStream 0.78-1.00 1.00 0.96
7-point stencil 0.82-0.87 1.00 0.92
miniBUDE 0.59-0.82 0.38 0.54

Hariree-Fock >2X <<1.0 0.92 (mixed)



Key observations o

1. Memory-bound: Mojo performance matched or nearly matched C++ CUDA and
HIP

2. Compute-bound: Lacks fast-math optimizations; atomic operations need work
3. Compile-time model: powerful, but may be not ideal for HPC

4. Python Interoperability: Functional, but requires linking against a Python runtime,
100% outside MLIR compilation.

5. Productivity: Python-like, but still low-level

6. Tooling and Ecosystem: Works with NVIDIA NSight and AMD rocprof; library
ecosystem still early-stage



Conclusion 65

e Ourwork is the first comprehensive evaluation of Mojo’'s GPU-portable

performance

o Promising but not perfect: strong results for memory-bound, but workload-
dependent

e MLIR + Python + GPU portability: strong potential unifying HPC-Al language as it
matures

o Future work: MojoBLAS
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BabelStream Mojo vs. CUDA NCU profiling metrics

67

Nsight Compute CLI Copy Mul Add Dot

(ncu) metric Mojo CUDA Mojo CUDA Mojo CUDA Mojo CUDA
Duration (ms) 0.202 0.205 0.203 0.208 0.264 0.269 0.215 0.168
Throughputs (%)

- Compute SM 16.3 28.6 18.2 28.2 15.9 27.3 51.1 11.4
- Memory 69.7 68.9 69.2 68.0 81.7 80.5 69.9 87.6
L1 ai (FLOP/byte) - 0.06 0.04 0.13

L2 ai (FLOP/byte) - 0.08 0.05 0.14 0.13
L3 ai (FLOP/byte) - 0.12 0.06 0.14 0.13
L1-3 Perf (FLOP/s) = 1.64E11 1.61E11 | 1.26E11 1.24E11 | 3.5E11 4.01E11
Registers 16 16 16 26 20
Load Global (LDG) 1 1 2 2

Store Global (STG)

1

1




7-point stencil Mojo vs. CUDA NCU profiling metrics

Nsight Compute CLI
(ncu) metric

Double Precision
L=512 (512X1X1)
Mojo CUDA

Single Precision
L=1024 (1024X1X1)
Mojo CUDA

Duration (ms)
Throughputs (%)

- Compute SM

- Memory

L1 ai (FLOP/byte)
L2 ai (FLOP/byte)
L3 ai (FLOP/byte)
L1-3 Perf (FLOP/s)
Registers

Load Global (LDG)
Store Global (STG)

1.10 0.96
81.41 51.96
67.98 76.72

0.14
0.26
0.62
1.20E12 1.38E12
24 21
[3

8.74 |
79.8 937
Sl 43.9

0.24

0.51

1.24
1.22E12 1.48E12
26 20

7
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