
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Toward Productive HPC
Programming Systems for
the Post-Exascale Era

D e c e m b e r 5 , 2 0 2 5

Keita Teranishi
Group Leader, Programming Systems, Computer
Science and Mathematics Division

2

12/9/252

Oak Ridge Leadership Computing Facility 2009-2021
from Petascale to Exascale

Jaguar
2.3 PF

Multi-core CPU
7 MW

Titan:
27 PF

Hybrid GPU/CPU
9 MW

2009 2012 2017 2021

Frontier
2,027 PF

Hybrid GPU/CPU
29 MW

10 EF
HPL-MxP

Summit
200 PF

Hybrid GPU/CPU
13 MW

1015
1016

1017

1018

ORNL successfully delivered a string of #1 Leadership Computers

The previous graph has looked the same for every generation
only scale of the vertical axis changes

Credit: Al Geist (ORNL)

3

Post-Exascale Era - AI Supercomputing Era

• Announcement by Oak Ridge National Lab and Argonne National Lab

4

Genesis Mission - AI-for-science program

• Executive Order, November 24

• Manhattan/Apollo–style effort to use AI
and federal scientific data to “unleash a
new age of AI-accelerated innovation
and discovery” and bolster U.S.
technological dominance.

• Puts DOE in charge and builds a unified
AI platform

• Builds in security and access control

• Forces government-wide alignment and
partnerships

• Imposes aggressive implementation
deadlines

4

5

Today’s Talk

• Post-ECP Software Ecosystem

• Emerging Programming Language
– Julia
– Mojo

5

6

Stewardship of HPC Programming Software Ecosystem

6

7

Why do we care about programming environment?

From Hidden Figures, 2016.
“FORTRAN(IV) is a new and exciting language used by
programmers to communicate with computers. It is
exciting as it is the wave of the future.” --Octavia Spencer
as Dorothy Vaughan, Langley Research Center, NASA in
1961.

(Vaughan was using IBM 7090 Mainframe Computer)

Today, we continue to use programming systems as a
critical tool to communicate with computers and shape
the future.

Courtesy: Damian Rouson at LBL and
Kengo Nakajima at RIKEN/U of Tokyo
who found the line in the movie.

8

Scientific Computing Software Development During Exascale
Computing Project (ECP) and Post-ECP Era
US DOE Exascale Computing Project (2016-2023)
• Software Technology Project

• Development of 70 software products
• Annual budget of $70M

• Programming Systems
• Developed over 10 programming system products

• Supercomputing Systems
• All DOE supercomputing systems employ accelerator technology

Post-ECP Initiative
• End of 2022: Software Sustainability Proposal Call

• Issued by the US DOE Advanced Scientific Computing Research (ASCR)
• April 2023: Phase 1 – Incubation

• 6 projects initiated
• Fall 2023: the Next Generation Scientific Software Technology (NGSST)

• Four existing projects and one new project were recommended for funding
• January 2024: Phase 2 Commencement

• Annual funding of $11.5M allocated through 2028

9

• Adapting to Heterogeneous Computing Norms
– NVIDIA, AMD and Intel GPUs

• Enhancing Productivity Through Performance Portability
– Same source code across different platforms

• Evolving Programming Systems
– C++ has become dominant language for ECP apps
– High productivity Languages, AI/ML

• Legacy Applications
– Many Fortran applications are still actively used in other DOE programs.

Courtesy: Evans TM, Siegel A, Draeger EW, et al. A survey of
software implementations used by application codes in the
Exascale Computing Project. IJHPCA. 2022;36(1):5-12

Observations during ECP

Courtesy: Kento Sato, RIKEN, Japan

10

Change in Performance Portability Landscape

TOP 500 Supercomputer
10 highest ranked 11/2007

Intel Xeon 4C
3 Systems

AMD Opteron 2C
3 Systems

IBM PowerPC
4 Systems – 2C/4C

11

Intel Data Center GPU
Max

NVIDIA GPUs
6 Systems

AMD GPUs
3 Systems

CPUs:

Accelerators:

AMD EPYC
2 Systems

IBM Power9
2 Systems

Intel Xeon
5 System

Fujitsu ARM
1 System

Threading
Building
Blocks

std::thread

TOP 500 Supercomputer
10 highest ranked 11/2023

Change in Performance Portability Landscape

12

Observations during ECP

HPC Vendor Shift
• Transitioning from traditional HPC to AI/ML-focused systems.
Cloud HPC Growth
• Cloud-based solutions are overtaking on-premises HPC.
DOE's Custom Solutions
• Features compilers, runtime, APIs, and testing suites with fast support.
• Committed to standardizing C++, Fortran, OpenMP/ACC, MPI to meet DOE's

specific needs.
• Aims to establish a unique position within the broader open-source software

community.
Strategic Solution
• Embrace a community-wide, proactive approach to new technology

integration.

13

5 Software Stewardship Organizations
NGSST is the next step after the successful DOE Exascale Computing Project (2016-
2023) as we evolved into “Heterogeneous and AI dominated landscape”

Toward a Post-ECP
Software

Sustainability
Organization (PESO)

Lois
Curfman
McInnes

(ANL)

Open Scientific
Software

Foundation (CORSA)

Greg
Watson
(ORNL)

Stewardship for
Programming
Systems and

Tools (S4PST)

Keita
Teranishi
(ORNL)

Sustainable Tools
Ecosystem Project

(STEP)

Terry
Jones

(ORNL)

OASIS (SciDAC
FastMath and

RAPIDS-2)

Rob
Ross
(ANL)

Michael Heroux (retired, SNL) served the former PI of PESO.

14

What is S4PST?

• Objective: Enhance Programming Systems for next-generation high-performance computing (HPC)
systems and ensure their seamless integration with emerging AI technologies for scientific advancement.

• Scope: Focus on Performance Portable Parallel Programming Frameworks, Compilers, Distributed
Computing Framework, and High Productivity Languages.

• Challenges:
– Technical: Requires unique skill sets, including comprehensive knowledge of full-stack technologies,

system architecture, and application needs.
– Portfolio: Commitment to serving existing users and computing systems while embracing new

technologies, meeting evolving application demands, and fostering the next generation of HPC
experts.

– People: Dedicated engagement is essential for the development of individual products, support of
users, and mentoring of emerging talents (future HPC experts and leaders).

15

S4PST: Our portfolio for DOE’s Scientific Mission
Product Stewardship

• OpenMP/OpenACC

• LLVM

• Fortran

• Kokkos

• MPICH

• Open MPI

• Legion

• GASNet-EX/UPC++

• HIP

• SYCL

Emerging Technologies

• Automatic Differentiation (AD)

• HPC+AI ecosystems: Julia, Mojo, Python

• Large language models for HPC

• Kokkos ecosystems adapting AI-
hardware/special arithmetic units

16

S4PST Community
• PI: Keita Teranishi (ORNL)
• CoPI: William Godoy and Pedro Valero

Lara
• 7 National Laboratories:

• Oak Ridge National Laboratory
• Argonne National Laboratory
• Lawrence Livermore National Laboratory
• Lawrence Berkeley National Laboratory
• Sandia National Laboratories
• Los Alamos National Laboratory
• SLAC National Accelerator Laboratory

• University Partners:
• University of Delaware
• Massachusetts Institute of Technology

• Collaborations:
• Louisiana State University
• Pacific Northwest National Laboratory
• Carnegie Mellon University
• University of Tennessee, Knoxville
• Stanford University
• Other 6 NSSGT projects

Future
HPC

Expert

Keita Teranishi
(ORNL)

Pedro Valero-
Lara (ORNL)

William Godoy
(ORNL)

Christian Trott
(SNL)

Damien Lebrun-
Grandie (ORNL)

Brice Videau
(ANL, ALCF)

Damian Rouson
(LBL)

Johannes Doerfert
(LLNL)

Sunita
Chandrasekaran
(UD)

Johannes Blaschke
(LBL,NERSC)

Pat McCormick
(LANL)

Alex Aiken (SLAC) Paul Hargrove
(LBL)

Katherine
Rasmussen (LBL)

Joel Denny
(ORNL)

Thomas Naughton
(ORNL)

Suzanne Parete-
Koon (ORNL)

Swaroop
Pophale (ORNL)

Michel Schanen
(ANL)

Hui Zhou (ANL) Rajeev Thakur
(ANL)

Ignacio
Laguna (LLNL)

Seyong Lee
(ORNL)

Thomas
Applencourt
(ANL,ALCF)

Ken Raffenetti
(ANL)

Yanfei Guo
(ANL)

Siva
Rajamanickam
(SNL)

Rabab
Alomairy (MIT)

Alan Edelman
(MIT)

Jan Hückelheim
(ANL)

Giorgis
Georgakoudis
(LLNL)

17Energy.gov/science

HPSF Conference 2025
Partnership: NNSA – ASC, Industry

Achievement
• Coorganized the inaugural HPSF Conference
• HPSF is the High Performance Software Foundation a part of the Linux

Foundation
• HPSF partners include DOE labs, universities, and industry

(hpsf.io/members)
• HPSF is the home for DOE led Open Source projects, including Kokkos and

Spack enabling multi-institutional collaboration through open governance

Significance and Impact
• The conference brought together over 200 developers and users of the HPSF

projects
• The event enables users of projects such as Kokkos to learn from each other,

and provide feedback to developers to inform future directions of the project
• HPSF Conference is engineering focused: how do we manage open source

projects, what technical challenges are users encountering, how do we
improve robustness and sustain Open Source Software for scientific and
engineering HPC

The HPSF Conference 2025 facilitated the coming together of the HPSF
community to exchange experiences and deepen collaborations. Feedback on
the conference was extremely positive with planning for the next event in 2026
now underway.

Member Products
• Kokkos, Chapel, OpenMPI (planning)

18

S4PST – Highlights
Software Release:
• Kokkos 4.7
• OpenMPI 5.0.2, MPICH 4.3
• OpenMP 5.2 and 6.0 Verification Suites
• OpenACC 3.3 Verification Suites
• ChipStar v1.1 (HIP on Aurora)
• Julia 1.1
• JACC (Julia for Accelerators)

Outreach:
• S4PST Presentation in Japan (HPC-AI Council)
• Kokkos User Group Meeting at SNL, NM.
• Kokkos Developers Meeting at ORNL
• Kokkos Presentation and Tutorial in Japan
• LBL hosted Fortran Standards Committee Meeting in Berkeley
• ANL hosted IWOCL24 in Chicago
• MPICH and OpenMPI teams collaborate for Abstract Binary

Interface standardization
• SIAM PP24: OpenMP, LLVM, Kokkos, Fortran, Julia
• SC24/SC25 BoFs, Tutorials,
• SIAM CSE25: Julia, CASS, etc.

Collaborations
• OpenACC Specification Committee
• OpenMP Specification Committee
• Enzyme team and several universities under NSF

project
• SciDAC Next Generation Power Grid Analysis

Technical Accomplishments:
• Kokkos-3 won IEEE TPDC Best Paper Award
• Legion runs on 8,000 nodes of Frontier
• ComPile LLVM-IR LLM released
• 5+ IJHPCA Journal paper submissions

International Collaboration:
• DOE-MEXT (Japan) on Fortran and Kokkos
• Kokkos (DOE team) - CEA Collaboration
• ADAC: The Accelerated Data Analytics and Computing Institute

19

Emerging High Productivity Languages

19

20

Thanks!

• Tatiana Melnichenko

• William Godoy

• Pedro Valero-Lara

• Philip Fackler

• Steven Hahn

• Narasinga Rao Miniskar

• Het Mankad

• Rafael Ferreira da Silva

• Jeff Vetter

21

21Research directions toward solutions

● Researchers are actively developing languages and tools to bridge these gaps

22

Yet another language?

Things I use today
weren't always there

BSc 2002

80-90s

PhD 2009
NASA postdoc

Intel 2012

ORNL 2016

Today

23

LLVM: a game changer https://llvm.org/ C. Lattner and V. Adve, "LLVM: a compilation
framework for lifelong program analysis &
transformation," International Symposium on
Code Generation and Optimization, 2004. CGO
2004., 2004, pp. 75-86,
https://doi.org/10.1109/CGO.2004.1281665 .

http://www.aosabook.org/en/llvm.html

LLVM Typed Static Single Assignment (SSA) Intermediate Representation (IR) aka LLVM-IR:
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

%57 = call %"Array(Int32)"* @"*Array(Int32)@Array(T)::unsafe_build:Array(Int32)"(i32 610, i32 2), !dbg !89

https://llvm.org/
https://doi.org/10.1109/CGO.2004.1281665
http://www.aosabook.org/en/llvm.html
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

24

Julia: “scientific” (Fortran-like) access to LLVM and paid by industry

julia> function add(x,y)
 return x+y
 end

julia> @code_llvm add(2,3)
; @ REPL[1]:1 within `add`
define i64 @julia_add_132(i64
signext %0, i64 signext %1) #0 {
top:
; @ REPL[1]:2 within `add`
; ┌ @ int.jl:87 within `+`

 %2 = add i64 %1, %0
; └
 ret i64 %2

}

https://godbolt.org/

https://godbolt.org/

25

Julia's value proposition for science
• Designed for “scientific computing” (Fortran-like) and “data science” (Python-like)

with performant kernel code via LLVM compilation
• Lightweight interoperability with existing Fortran and C libraries
• Julia is a unifying workflow language with a coordinated ecosystem

Slow

Fast

HardEasy

https://juliadatascience.io/

https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-
julia-programming-language-for-free/https://developer.nvidia.com/blog/gpu-

computing-julia-programming-language/

“Julia does not replace Python, but the costly workflow process around
Fortran+Python+X, C+X, Python+X or Fortran+X (e.g. GPUs, simulation +
data analysis)”
where X = { conda, pip, pybind11, Cython, Python, C, Fortran, C++,
OpenMP, OpenACC, CUDA, HIP, CMake, numpy, scipy, Matplotlib, Jupyter,
…}

LLVM
Rich data science
ecosystem

Pkg.jl

https://juliadatascience.io/
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/

26 26

Julia Brief Walkthrough

❑ History: started at MIT in the early 2010s (predates
Python Numba)
https://julialang.org/blog/2022/02/10years/

❑ JuliaHub (formerly Julia Computing) and MIT are
major contributors: https://info.juliahub.com/case-
studies

❑ First stable release v1.0 in 2018, v1.11 as of 2025
https://julialang.org/

❑ Open-source GitHub-hosted packages and
ecosystem with MIT permissive license:
https://github.com/JuliaLang/julia

❑ Community: annual JuliaCon summer conference:
https://juliacon.org/2025/

95% of Julia packages in the registry had some form of CI
(youtube.com/watch?v=9YWwiFbaRx8)

https://julialang.org/blog/2022/02/10years/
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://julialang.org/
https://github.com/JuliaLang/julia
https://juliacon.org/2024/
http://youtube.com/watch?v=9YWwiFbaRx8

27 27

Julia Brief Walkthrough

❑ Reproducibility is in the core of
the language:

 - Interactive: Jupyter, Pluto.jl
 - Packaging Pkg.jl
 - Environment Project.toml
 - Testing Test.jl

❑ Just-in-time or Ahead-of-time
compilation with
PackageCompiler.jl (juliac is WIP)

❑ Powerful metaprogramming for
code instrumentation: @profile,
@time, @testset, @test,
@code_llvm, @code_native,
@inbounds,

❑ Interoperability is key: @ccall,
@cxx, PyCall, CxxWrap.jl

https://github.com/ornl-training/julia-basics

https://github.com/fonsp/Pluto.jl
https://github.com/JuliaLang/Pkg.jl
https://pkgdocs.julialang.org/v1/toml-files/
https://docs.julialang.org/en/v1/stdlib/Test/
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics

28

Gray-Scott app: https://github.com/JuliaORNL/GrayScott.jl
Simple 3D 2-variable
diffusion-reaction solver
• CPU Threads, CUDA.jl

and AMDGPU.jl
backends using
multiple dispatch

• Parallel I/O ADIOS2,
can be visualized with
ParaView

• MPI.jl for
communication

• Configuration and job
scripts for Frontier,
Crusher and Summit
under ./scripts/

• Data analysis on
JupyterHub

Research question: Can I write
an entire HPC ”hard-coupled”
workflow in Julia? https://doi.org/10.1145/3624062.3624278

Best paper at SC23 WORKS

https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/

https://github.com/JuliaORNL/GrayScott.jl
https://doi.org/10.1145/3624062.3624278
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/
https://www.nextplatform.com/2023/09/26/julia-still-not-grown-up-enough-to-ride-exascale-train/

29

Frontier on-node scalability using AMDGPU.jl
7-point stencil

30

Frontier on-node scalability using AMDGPU.jl

Julia AMDGPU.jl reaches ~50% bandwidth (performance) of HIP
No surprises on: FETCH/WRITE SIZE, LLVM-IR
rocprof reports more activity “lds” on Julia

7-point stencil

31

Frontier on-node scalability using AMDGPU.jl for several GPUs

Bandwidth distribution for 4,096 GCD (GPUs) and 20 timesteps. HIP ~ 600 GB/s (800 GB/s claimed on
MI250x), Theoretical Peak on MI250x = 1,600 GB/s

32

GrayScott.jl Weak Scaling on Frontier

• Tested successfully
up to 512 nodes (5%
of Frontier) 1
GCD/MPI proc using
MPI.jl

• Tried 4K nodes (50%
of Frontier) resulted
in a libfabric error

• 2-3% variability up to
64 nodes

• 12-15% variability at
512 nodes

33

Data analysis on JupyterHub at OLCF

• https://jupyter.olcf.ornl.gov/
• We launched a Julia kernel on

JupyterHub to read and
analyze data

• We read with ADIOS2.jl and
visualize with Makie.jl

• JIT and TTFX (time to first plot)
can be a nuance

• Pluto.jl?

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Parashar M. ... & Klasky, S. (2020). Adios 2: The
adaptable input output system. a framework for high-performance data management. SoftwareX, 12, 100561.
https://doi.org/10.1016/j.softx.2020.100561

https://jupyter.olcf.ornl.gov/
https://jupyter.olcf.ornl.gov/
https://doi.org/10.1016/j.softx.2020.100561

34

Community Efforts in HPC: more frameworks written in Julia
HPC “backends”:

• https://juliagpu.org/:
AMDGPU.jl , CUDA.jl
OneAPI.jl , Metal.jl

• KernelAbstractions.jl, JACC.jl

• MPI.jl
• Threads (part of Base)

• ADIOS2.jl , HDF5.jl

Monthly HPC Call (Valentin Churavy,
MIT)

Porting miniWeather App to Julia
(Youngsung Kim, Hyun Kang, and Sarat
Sreepathi, CSED)

Julia + Sunway + QC at SC22

34

https://github.com/omlins/julia-gpu-course

https://enccs.github.io/Julia-for-HPC

https://docs.dftk.org/stable

Top15 most popular packages

ECP ExaSDG on Summit

https://juliaastro.github.io/dev
https://github.com/JuliaParallel

https://github.com/CliMA

https://github.com/SunnySuite/Sunny.jl

https://sciml.ai/

https://github.com/ProjectTorreyPines
General Atomics:

https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/Metal.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/JuliaORNL/JACC.jl
https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/MPI.jl
https://docs.julialang.org/en/v1/manual/multi-threading/
https://docs.julialang.org/en/v1/manual/multi-threading/
https://github.com/eschnett/ADIOS2.jl
https://github.com/eschnett/ADIOS2.jl
https://github.com/JuliaIO/HDF5.jl
https://calendar.google.com/calendar/event?eid=anJmM3F1dWU2NXRmNGNxcm5jdXVhZzFlM3ZfMjAyMjA5MjdUMTgwMDAwWiBqdWxpYWxhbmcub3JnX2tvbWF1YXFldDE0ZW9nOW9pdjNwNm83cG1nQGc&ctz=America/New_York
https://docs.google.com/presentation/d/1TGEC5v3lv-gZZvSX_21qlpLifbeJhbAKUfLKbbHx6dM/edit?usp=sharing
https://dl.acm.org/doi/abs/10.5555/3571885.3571903
https://github.com/omlins/julia-gpu-course
https://github.com/omlins/julia-gpu-course
https://github.com/omlins/julia-gpu-course
https://github.com/omlins/julia-gpu-course
https://github.com/omlins/julia-gpu-course
https://enccs.github.io/Julia-for-HPC
https://enccs.github.io/Julia-for-HPC
https://enccs.github.io/Julia-for-HPC
https://enccs.github.io/Julia-for-HPC
https://enccs.github.io/Julia-for-HPC
https://docs.dftk.org/stable/
https://forem.julialang.org/nassarhuda/pagerank-on-the-julia-package-dependency-graph-2gbo
https://sinews.siam.org/Details-Page/rapid-prototyping-with-julia-from-mathematics-to-fast-code
https://juliaastro.github.io/dev
https://github.com/JuliaParallel
https://github.com/CliMA
https://github.com/SunnySuite/Sunny.jl
https://sciml.ai/
https://github.com/ProjectTorreyPines

35

JACC.jl (Julia ACCelerated), What is that??

• Think in Kokkos, but now imagine that it is easy to use

• The metaprogramming and performance portability model of Julia
– One “parallel_for” code running everywhere

• JACC is a unified Julia front-end in top of multiple backends
– Threads (CPUs), CUDA (NVIDIA GPUs), AMDGPU (AMD GPUs),

and OneAPI (Intel GPUs)

• Hide low-level and device specific implementation
– Memory, granularity, etc.

• Improve programming productivity for Science and HPC

• A growing community (family)
– BNL(NERSC), Argonne, MIT, ETHZ, FI/CCQ, …
– You are welcome to join (JACC meetings once a month)

https://github.com/JuliaORNL/JACC.jl

36

What is a parallel_for?
• For loops that are “ideally” independent

https://github.com/JuliaORNL/JACC.jl

for i in 1:Nx

 for j in 1:Ny

 c[i,j] = a[i,j] + b[i,j]

 end

end

parallel_for(domain, kernel, args…)

parallel_for((Nx,Ny), add2D, a, b, c)

function add2D

 c[i,j] = a[i,j] + b[i,j]

end

Kernel workload
per (i,j)

Domain

Fine
granularity
(i,j)

Coarse granularity
(i,j)k-
(i,j)k+Ncore

https://github.com/JuliaORNL/JACC.jl

37

JACC model, How to use it??

• Descriptive, not prescriptive

• Two main API components

• Memory: JACC.array, JACC.shared
high-level: JACC.ones/JACC.zeros
– An alias to the corresponding

back end memory

• Kernels: JACC.parallel_for and
JACC.parallel_reduce
– Kernel and arguments passed to

functions
– Back end selection pre-compilation:

JACC.set_backend(“AMDGPU”);
LocalPreferences.toml: [JACC]
backend: Threads, CUDA, AMDGPU

https://github.com/JuliaORNL/JACC.jl

u = JACC.ones(T, size_x + 2, size_y + 2, size_z + 2)
v = JACC.zeros(T, size_x + 2, size_y + 2, size_z + 2)

u_temp = JACC.zeros(T, size_x + 2, size_y + 2, size_z + 2)
v_temp = JACC.zeros(T, size_x + 2, size_y + 2, size_z + 2)

offsets = JACC.array(mcd.proc_offsets)
sizes = JACC.array(mcd.proc_sizes)

d::Int64 = 6
minL = Int64(settings.L / 2 - d)
maxL = Int64(settings.L / 2 + d)

ncenter_cells = maxL - minL + 1
Lx, Ly, Lz = mcd.proc_sizes[1], mcd.proc_sizes[2],
mcd.proc_sizes[3]

JACC.parallel_for((Lx, Ly, Lz), _init_fields_kernel!,
u, v, offsets, sizes, minL, maxL)

Gray-Scott simulation code

https://github.com/JuliaORNL/JACC.jl
https://github.com/JuliaORNL/GrayScott.jl/blob/GrayScott-JACC/src/simulation/Simulation.jl

38

How is JACC implemented??

• The simpler the better, use everything that Julia can
provide

• One implementation per backend

https://github.com/JuliaORNL/JACC.jl

39

OK, but this is HPC, What about performance??

Julia as a unifying end-to-end
workflow language on the
Frontier exascale system. SC
WORKS 2023

Evaluating performance and
portability of high-level
programming models: Julia,
Python/Numba, and Kokkos on
exascale nodes. IPDPS HIPS 2023

SC24 WACCPD

https://dblp.org/db/conf/sc/sc2023w.html
https://dblp.org/db/conf/sc/sc2023w.html
https://dblp.org/db/conf/sc/sc2023w.html
https://dblp.org/db/conf/ipps/ipdps2023w.html
https://dblp.org/db/conf/ipps/ipdps2023w.html
https://doi.org/10.1109/SCW63240.2024.00245

40

LBM Prototype in Julia
Boltzmann Lattice Advanced Simulation Tool

• Lattice: D3Q19

• Mesh: 256x256x256

• Streaming algorithm: Esoteric Pull

• Test case: Taylor Green Vortex

https://cerfacs.fr/

https://cerfacs.fr/

41

Ongoing efforts??
• JACC.shared

– Exploiting high-bandwidth
programable in-chip GPUs memory

https://github.com/JuliaORNL/JACC.jl

Accepted at
IEEE HPEC24

42

Ongoing JACC efforts
• JACC.experimental

o A separate JACC module to
explore new ideas

• JACC Proxies

o Compare JACC in science
workloads (LULESH,
XSBench, BabelStream,
Hartree-Fock)

• JACC.BLAS
– BLAS library on top of JACC

• JACC.multi
– Support for multi-device

• JACC.auto
– Support for auto-tuning

• Task-based – JACC.async
– DAGGER.jl, IRIS - R&D100

https://github.com/JuliaORNL/JACC.jl

Presented at SC24 WACCPD

JACC: SC24 Best Poster Finalist (6/120)

SC24 AI4Science using Julia

Best ORNL CS intern
poster by Kelly Tang

SC24: Julia for HPC 1st Tutorial
and 3rd BoF w/ MIT and LBNL

https://github.com/JuliaORNL/JACC.jl
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648

43

Ongoing JACC efforts: facilities
• Integrated Research Infrastructure: provide an accessible performance portable ecosystem

• CPU only workflows -> CPU/GPU on HPC systems Best Paper at SC24 XLOOP

https://wordpress.cels.anl.gov/xloop-2024/awards/
https://wordpress.cels.anl.gov/xloop-2024/awards/

44

Where to get started?
• Pick a gentle tutorial: https://techytok.com/from-zero-to-julia/

• https://github.com/ornl-training/julia-basics (training by WF Godoy & Philip Fackler) OLCF
Tutorial: https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html

• Use VS Code as the official IDE + debugger

• JuliaCon talks are available on YouTube

• https://discourse.julialang.org/ Stackoverflow might be outdated,
https://julialang.slack.com/

• Julia docs and standard library: https://docs.julialang.org/en/v1/

• Learn: Project.toml, Testing.jl @testset @test, Pluto.jl , CUDA.jl/AMDGPU.jl , JACC.jl,
KernelAbstractions.jl, LinearAlgebra.jl , Makie.jl , Plots.jl and Flux.jl (AI/ML), how to build a
sysimage with PackageCompiler.jl

• Pick problems you care about! Let us know if you’re interested in a hackathon.

• Patience and community reliance: learning a language is a big investment.

44https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html

https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://discourse.julialang.org/
https://discourse.julialang.org/
https://julialang.slack.com/
https://docs.julialang.org/en/v1/
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html

45

45Early Exploration of Mojo

46 46

When Python is not enough…and it’s a fragmented world

https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-
india-tutorial/main/img/history-of-bindings-2.svg

Making Python “faster”

https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg

47

47Mojo overview

● Mojo combines Python’s syntax and ecosystem with high performance
● GPU portability in the standard library: NVIDIA, AMD, and Apple Silicon* GPUs
● MLIR compilation
● Industry-funded
● Memory safety via variable lifetime
● Projected open-source in 2026

* The most up-to-date Mojo GPU
compatibility list can be found here:
https://docs.modular.com/max/pack
ages/#gpu-compatibility

https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/
https://docs.modular.com/max/packages/

48

48Mojo overview

Compile with Pixi
package
manager:

Just-in-Time:
pixi run mojo
prog.mojo

Ahead-of-Time:
pixi shell
mojo build
prog.mojo
./prog

https://docs.modular.c
om/mojo/faq/

GPU kernel
launching

GPU memory model

GPU kernel execution

Python interoperability
uses a separate
runtime approach

Compile-time GPU
programming requires
tensor type, size, and
layout

Mojo FAQ:

https://docs.modular.com/mojo/faq/
https://docs.modular.com/mojo/faq/

49

49Project description

● Can scientific users benefit from Mojo’s performance-portable GPU
codes?

● First comprehensive study on Mojo

● Ported 4 scientific workloads
○ 2 memory-bound
○ 2 compute-bound

● Goal: Assess Mojo performance portability vs. vendor-native baselines (CUDA/HIP)
● Tested and benchmarked on ORNL’s ExCL nodes:

○ NVIDIA H100 NVL – 94 GB
○ AMD MI300A – 128 GB HBM3

https://github.com/tdehoff/
Mojo-workloads

GitHub repo:

https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads
https://github.com/tdehoff/Mojo-workloads

50

50Memory-bound workloads

● Performance metric: memory bandwidth (GB/s)

● Seven-point stencil: Used for
modeling diffusion phenomena
(AMD lab notes:
github.com/amd/amd-lab-notes)

● BabelStream: Copy, Multiply, Triad,
Add, Dot memory benchmarking
operations (University of Bristol:
github.com/UoB-HPC/BabelStream)

http://github.com/amd/amd-lab-notes
http://github.com/amd/amd-lab-notes
http://github.com/amd/amd-lab-notes
http://github.com/amd/amd-lab-notes
http://github.com/amd/amd-lab-notes
http://github.com/UoB-HPC/BabelStream
http://github.com/UoB-HPC/BabelStream
http://github.com/UoB-HPC/BabelStream

51

51Compute-bound workloads

● miniBUDE: Models ligand-protein docking
(University of Bristol: github.com/UoB-
HPC/miniBUDE)

● Performance metric: miniBUDE – GFLOP/s, Hartree-Fock – time in ms

● Hartree-Fock: Includes atomics;
approximates the electron behavior in
quantum systems (Argonne NL:
github.com/gdfletcher/basic-hf-proxy)

http://github.com/UoB-HPC/miniBUDE
http://github.com/UoB-HPC/miniBUDE
http://github.com/UoB-HPC/miniBUDE
http://github.com/gdfletcher/basic-hf-proxy
http://github.com/gdfletcher/basic-hf-proxy
http://github.com/gdfletcher/basic-hf-proxy
http://github.com/gdfletcher/basic-hf-proxy
http://github.com/gdfletcher/basic-hf-proxy

52

52Roofline model: NVIDIA H100

DDR GB/s miniBUDE

Hartree-Fock

Dot
Triad

Multiply
Add

memory-bound compute-bound

7-point stencil

BabelStream

53

Memory-bound performance
results

54

54BabelStream on NVIDIA H100

● Input configuration: vector of 2²⁵ doubles
● NVIDIA NCU profiler output is available in extra slides

55

55BabelStream on NVIDIA H100

● Input configuration: vector of 2²⁵ doubles
● NVIDIA NCU profiler output is available in extra slides

CUDA: Number of
GPU thread blocks
determined
dynamically from
SM count

Mojo: Block count
fixed at compile
time, computed
using input size

56

56BabelStream on AMD MI300A

● Input configuration: vector of 2²⁵ doubles

Mojo: partial sums
array is device-
allocated and
copied back to
host buffer for the
final reduction

HIP: partial sums
array is host-
allocated
(pinned) via
hipHostMalloc

57

577-point stencil on NVIDIA H100

● 3-dimensional input, L
denotes dimension size

● Tested with different GPU
thread block configurations

● NVIDIA NCU profiler output is
available for:
○ L=512, 512x1x1 block
○ L=1024, 1024x1x1 block

58

587-point stencil on AMD MI300A

59

Compute-bound performance
results

60

60miniBUDE on NVIDIA H100

● Work-group size = 8, PPWI (x-axis) varies the computational workload per GPU
thread

61

61miniBUDE on AMD MI300A

● Work-group size = 8, PPWI (x-axis) varies the computational workload per GPU
thread

62

62Hartree-Fock (atomics)

● NVIDIA H100: Mojo is about 2.5 times faster than CUDA for small input sizes; at
1024 Mojo’s performance degrades sharply

● AMD MI300A: Mojo significantly underperforms HIP across input sizes

Kernel execution
duration (ms)

NVIDIA H100 AMD MI300A

Mojo CUDA Mojo HIP

a=1024, ngauss=6 147,250 2,652 846

a=256, ngauss=3 187 472 25,266 178

a=128, ngauss=3 21 53 2,765 23

a=64, ngauss=3 3 7 436 4

63

63Performance portability metric (Ф)

● Adapted from Pennycook et al (2021) & Marowka (2025):

Workload Ф NVIDIA H100 Ф AMD MI300A Average Ф

BabelStream 0.78-1.00 1.00 0.96

7-point stencil 0.82-0.87 1.00 0.92

miniBUDE 0.59-0.82 0.38 0.54

Hartree-Fock >2x << 1.0 0.92 (mixed)

64

64Key observations

1. Memory-bound: Mojo performance matched or nearly matched C++ CUDA and
HIP

2. Compute-bound: Lacks fast-math optimizations; atomic operations need work
3. Compile-time model: powerful, but may be not ideal for HPC
4. Python Interoperability: Functional, but requires linking against a Python runtime,

100% outside MLIR compilation.
5. Productivity: Python-like, but still low-level
6. Tooling and Ecosystem: Works with NVIDIA NSight and AMD rocprof; library

ecosystem still early-stage

65

65Conclusion

● Our work is the first comprehensive evaluation of Mojo’s GPU-portable
performance

● Promising but not perfect: strong results for memory-bound, but workload-
dependent

● MLIR + Python + GPU portability: strong potential unifying HPC-AI language as it
matures

● Future work: MojoBLAS

66

Questions?
This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce

Development for Teachers and Scientists (WDTS) under the Community College Internships Program (CCI).This
work was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research’s Computer Science Competitive Portfolios program, MAGMA/Fairbanks project; and the
Next Generation of Scientific Software Technologies program, PESO and S4PST projects. This research used
resources of the Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725

SC25: ACM
Research Poster

SC25 WACCPD paper

SC25
Mojo

67

67
BabelStream Mojo vs. CUDA NCU profiling metrics

68

687-point stencil Mojo vs. CUDA NCU profiling metrics

